@article{SJIM_2024_27_1_a1,
author = {V. N. Grebenev and A. G. Demenko and G. G. Chernykh},
title = {Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {16--28},
year = {2024},
volume = {27},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/}
}
TY - JOUR AU - V. N. Grebenev AU - A. G. Demenko AU - G. G. Chernykh TI - Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2024 SP - 16 EP - 28 VL - 27 IS - 1 UR - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/ LA - ru ID - SJIM_2024_27_1_a1 ER -
%0 Journal Article %A V. N. Grebenev %A A. G. Demenko %A G. G. Chernykh %T Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium %J Sibirskij žurnal industrialʹnoj matematiki %D 2024 %P 16-28 %V 27 %N 1 %U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/ %G ru %F SJIM_2024_27_1_a1
V. N. Grebenev; A. G. Demenko; G. G. Chernykh. Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 16-28. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/
[1] Monin A. S. Yaglom. A. M., Statisticheskaya gidromekhanika, v. 1, Gidrometeoizdat, S-Pb., 1992; т. 2, 1996; A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Dover Publ., Mineola, 2007 | MR
[2] Hanjalic K., Launder B. E., “Reassessment of modeling turbulence via Reynolds averaging: A review of second-moment transport strategy”, Phys. Fluids, 33:9 (2021), 091302 | DOI
[3] V. N. Grebenev and B. B. Ilyushin, “Application of differential constraints to the analysis of turbulence models”, Dokl. Phys., 45:10 (2000), 550–553 | DOI | MR
[4] A. V. Shmidt, “Self-similar solutions of the model $k-\omega$ for a turbulent far wake”, Fluid Dyn., 54:2 (2019), 239–243 | DOI | DOI | MR
[5] Shmidt A. V., “Similarity in the far swirling momentumless turbulent wake”, J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 79–86 | DOI
[6] Belolipetskii V. M., Genova S. N., “On application of Prandtl—Obukhov formula in the numerical model of the turbulent layer depth dynamics”, J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 37–47 | DOI | MR
[7] Kingenberg D., Oberlack M., Pluemacher D., “Symmetries and turbulence modelling”, Phys. Fluids, 32:2 (2020), 025108 | DOI
[8] Kingenberg D., Oberlack M., “Statistically invariant eddy viscosity models”, Phys. Fluids, 34:5 (2022) | DOI
[9] Kaandorp M. L. A., Dwight R. P., “Data-driven modelling of the Reynolds stress tensor using random forests with invariance”, Comput. Fluids, 202 (2020), 104497 | DOI | MR | Zbl
[10] A. Bernard and S. N. Yakovenko, “Enhancement of RANS models by means of the tensor basis random forest for turbulent flows in two-dimensional channels with bumps”, J. Appl. Mech. Tech. Phys., 64:3 (2023), 437–441 | DOI | DOI | MR
[11] Grebenev V. N., Demenkov A. G., Chernykh G. G., Grichkov A. N., “Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains”, ZAMM Z. Angew. Math. Mech., 117:9 (2021), e202000095 | DOI | MR
[12] V. N. Grebenev, A. G. Demenkov, and G. G. Chernykh, “Method of Differential Constraints: Local Equilibrium Approximation in a Planar Momentumless Turbulent Wake”, J. Appl. Mech. Tech. Phys., 62:3 (2021), 383–390 | DOI | MR | Zbl
[13] Alexopoulos C. C., Keffer J. F., “Turbulent Wake in a Passively Stratified Field”, Phys. Fluids, 14:2 (1971), 216–224 | DOI
[14] Durbin P. A., Hunt J. C. R., Firth D., “Mixing by a turbulent wake of a uniform temperature gradient in the approach flow”, Phys. Fluids, 25:4 (1982), 588–591 | DOI
[15] I. A. Efremov, O. V. Kaptsov, and G. G. Chernykh, “Self-similar solutions of two problems of free turbulence”, Mat. Model., 21:12 (2009), 137–144 (in Russian) | MR | Zbl
[16] Rodi W., Turbulence models and their application in hydraulics. A state of the art review, IAHR, Delft, 1980, 104 pp.
[17] N. N. Yanenko, “Compatibility theory and methods for integrating systems of nonlinear partial differential equations”, Proc. 4th All-Union. Math. Congr., v. 2, Nauka, L., 1964, 247–252 (in Russian)
[18] A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, Method of Differential Constraints and Applications in Gas Dynamics, Nauka, Novosibirsk, 1988 (in Russian) | MR
[19] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Springer, Dordrecht, 1998 | MR
[20] Harsha P. T., “Kinetic Energy Methods”, Handbook of Turbulence, v. 1, Fundamentals and Applications, 1977, 187–235 | DOI
[21] Hinze J. O., Turbulence, Second edition, McGraw-Hill College, N. Y., 1975 | MR