Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 16-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

To study the flow in a far plane turbulent wake in a passively stratified medium, we use a mathematical model that includes differential equations for the balance of turbulence energy, the transfer of its dissipation rate, shear turbulent stress, a defect of the density of the liquid, and the vertical component of the mass flux vector. Algebraic truncation of the last equation leads to a well-known gradient relation for the vertical component of the mass flux vector. It is established that under a certain constraint on the values of empirical constants in the mathematical model and the law of time scale growth consistent with the mathematical model, this relation is a differential constraint for the model. The equivalence of the local equilibrium approach for the vertical component of the mass flux vector and the zero Poisson bracket for the dimensionless turbulent diffusion coefficient and the averaged density is shown. The results of numerical experiments illustrating the theoretical results are presented.
Keywords: far plane turbulent wake in passively stratified medium, differential constraint method, local equilibrium truncation, numerical modeling.
@article{SJIM_2024_27_1_a1,
     author = {V. N. Grebenev and A. G. Demenko and G. G. Chernykh},
     title = {Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {16--28},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/}
}
TY  - JOUR
AU  - V. N. Grebenev
AU  - A. G. Demenko
AU  - G. G. Chernykh
TI  - Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 16
EP  - 28
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/
LA  - ru
ID  - SJIM_2024_27_1_a1
ER  - 
%0 Journal Article
%A V. N. Grebenev
%A A. G. Demenko
%A G. G. Chernykh
%T Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 16-28
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/
%G ru
%F SJIM_2024_27_1_a1
V. N. Grebenev; A. G. Demenko; G. G. Chernykh. Local equilibrium approach in the problem of the dynamics of a plane turbulent wake in a passively stratified medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 16-28. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a1/

[1] Monin A. S. Yaglom. A. M., Statisticheskaya gidromekhanika, v. 1, Gidrometeoizdat, S-Pb., 1992; т. 2, 1996; A. S. Monin and A. M. Yaglom, Statistical Fluid Mechanics: Mechanics of Turbulence, Dover Publ., Mineola, 2007 | MR

[2] Hanjalic K., Launder B. E., “Reassessment of modeling turbulence via Reynolds averaging: A review of second-moment transport strategy”, Phys. Fluids, 33:9 (2021), 091302 | DOI

[3] V. N. Grebenev and B. B. Ilyushin, “Application of differential constraints to the analysis of turbulence models”, Dokl. Phys., 45:10 (2000), 550–553 | DOI | MR

[4] A. V. Shmidt, “Self-similar solutions of the model $k-\omega$ for a turbulent far wake”, Fluid Dyn., 54:2 (2019), 239–243 | DOI | DOI | MR

[5] Shmidt A. V., “Similarity in the far swirling momentumless turbulent wake”, J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 79–86 | DOI

[6] Belolipetskii V. M., Genova S. N., “On application of Prandtl—Obukhov formula in the numerical model of the turbulent layer depth dynamics”, J. Sib. Fed. Univ. Math. Phys., 13:1 (2020), 37–47 | DOI | MR

[7] Kingenberg D., Oberlack M., Pluemacher D., “Symmetries and turbulence modelling”, Phys. Fluids, 32:2 (2020), 025108 | DOI

[8] Kingenberg D., Oberlack M., “Statistically invariant eddy viscosity models”, Phys. Fluids, 34:5 (2022) | DOI

[9] Kaandorp M. L. A., Dwight R. P., “Data-driven modelling of the Reynolds stress tensor using random forests with invariance”, Comput. Fluids, 202 (2020), 104497 | DOI | MR | Zbl

[10] A. Bernard and S. N. Yakovenko, “Enhancement of RANS models by means of the tensor basis random forest for turbulent flows in two-dimensional channels with bumps”, J. Appl. Mech. Tech. Phys., 64:3 (2023), 437–441 | DOI | DOI | MR

[11] Grebenev V. N., Demenkov A. G., Chernykh G. G., Grichkov A. N., “Local equilibrium approximation in free turbulent flows: verification through the method of differential constrains”, ZAMM Z. Angew. Math. Mech., 117:9 (2021), e202000095 | DOI | MR

[12] V. N. Grebenev, A. G. Demenkov, and G. G. Chernykh, “Method of Differential Constraints: Local Equilibrium Approximation in a Planar Momentumless Turbulent Wake”, J. Appl. Mech. Tech. Phys., 62:3 (2021), 383–390 | DOI | MR | Zbl

[13] Alexopoulos C. C., Keffer J. F., “Turbulent Wake in a Passively Stratified Field”, Phys. Fluids, 14:2 (1971), 216–224 | DOI

[14] Durbin P. A., Hunt J. C. R., Firth D., “Mixing by a turbulent wake of a uniform temperature gradient in the approach flow”, Phys. Fluids, 25:4 (1982), 588–591 | DOI

[15] I. A. Efremov, O. V. Kaptsov, and G. G. Chernykh, “Self-similar solutions of two problems of free turbulence”, Mat. Model., 21:12 (2009), 137–144 (in Russian) | MR | Zbl

[16] Rodi W., Turbulence models and their application in hydraulics. A state of the art review, IAHR, Delft, 1980, 104 pp.

[17] N. N. Yanenko, “Compatibility theory and methods for integrating systems of nonlinear partial differential equations”, Proc. 4th All-Union. Math. Congr., v. 2, Nauka, L., 1964, 247–252 (in Russian)

[18] A. F. Sidorov, V. P. Shapeev, and N. N. Yanenko, Method of Differential Constraints and Applications in Gas Dynamics, Nauka, Novosibirsk, 1988 (in Russian) | MR

[19] V. K. Andreev, O. V. Kaptsov, V. V. Pukhnachev, and A. A. Rodionov, Applications of Group-Theoretical Methods in Hydrodynamics, Springer, Dordrecht, 1998 | MR

[20] Harsha P. T., “Kinetic Energy Methods”, Handbook of Turbulence, v. 1, Fundamentals and Applications, 1977, 187–235 | DOI

[21] Hinze J. O., Turbulence, Second edition, McGraw-Hill College, N. Y., 1975 | MR