On the spectral problem of modeling neutron distribution in weakly coupled systems
Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 5-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the spectral problem to study of local characteristics of weakly coupled systems in reactor physics. The method of associated invariant subspaces based on the matrix spectrum dichotomy method is described. When using this method, the neutron distributions are found that reflect the multiplicating properties of system local areas.
Keywords: spectrum, invariant subspace, weakly coupled system
Mots-clés : fission matrix.
@article{SJIM_2024_27_1_a0,
     author = {E. A. Biberdorf and E. F. Mitenkova and T. V. Semenova},
     title = {On the spectral problem of modeling neutron distribution in weakly coupled systems},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--15},
     year = {2024},
     volume = {27},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a0/}
}
TY  - JOUR
AU  - E. A. Biberdorf
AU  - E. F. Mitenkova
AU  - T. V. Semenova
TI  - On the spectral problem of modeling neutron distribution in weakly coupled systems
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2024
SP  - 5
EP  - 15
VL  - 27
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a0/
LA  - ru
ID  - SJIM_2024_27_1_a0
ER  - 
%0 Journal Article
%A E. A. Biberdorf
%A E. F. Mitenkova
%A T. V. Semenova
%T On the spectral problem of modeling neutron distribution in weakly coupled systems
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2024
%P 5-15
%V 27
%N 1
%U http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a0/
%G ru
%F SJIM_2024_27_1_a0
E. A. Biberdorf; E. F. Mitenkova; T. V. Semenova. On the spectral problem of modeling neutron distribution in weakly coupled systems. Sibirskij žurnal industrialʹnoj matematiki, Tome 27 (2024) no. 1, pp. 5-15. http://geodesic.mathdoc.fr/item/SJIM_2024_27_1_a0/

[1] I. M. Sobol', Numerical Monte Carlo Methods, Nauka, M., 1973 (in Russian)

[2] Brown F. B., Carney S. E., Kiedrowski B. C., Martin W. R., “Fission Matrix Capability for MCNP, Part I — Theory”, Proc. Int. Conf. Math. Comput. Methods Appl. Nucl. Sci. Eng, 2013, 2828–2839

[3] Brissenden R. J., Garlick A. J., “Biases in the estimation of $K_{eff}$ and its error by Monte-Carlo Methods”, Ann. Nucl. Energy, 13 (1986), 63–83 | DOI

[4] Ueki T., Brown F. B., Parsons D. K., Kornreich D. E., “Autocorrelation and dominance ratio in Monte-Carlo criticality calculations”, Nucl. Sci. Eng, 145 (2003), 279–290 | DOI

[5] E. F. Mitenkova and T. V. Semenova, “Using the TDMCC software to solve problems with a close-to-one dominant ratio”, Vopr. At. Nauki Tekh. Ser. Mat. Model. Fiz. Protsess., 2015, no. 4, 3–13 (in Russian)

[6] Blomquist R. N., Amirshaw M., Hanlon D., Smith N., Naito Yo., Yang J., Mioshi Yo., Yamamoto T., Jacquct O., Miss J., Source Convergence in Criticality Safety Analysis, Phase I: Results of Four Test Problems, OECD/NEA, Paris, 2006

[7] Whitesides G. E., “A difficulty in computing the k-effective of the World”, Transactions of the American Nuclear Society, 14:2 (1971), 26–40 | MR

[8] E. F. Mitenkova, D. A. Koltashev, and P. A. Kizub, “Distribution of the fission reaction rate in a weakly coupled system for the “checkerboard” test model”, At. Energ., 116:6 (2014), 345–350 (in Russian)

[9] E. F. Mitenkova and T. V. Semenova, “Calculation of neutron distribution functions in plane systems with extended inhomogeneous fuel sections”, At. Energ., 126:1 (2019), 15–19 (in Russian)

[10] S. K. Godunov, Modern Aspects of Linear Algebra, Nauchn. Kniga, Novosibirsk, 1997 (in Russian)

[11] T. V. Semenova, E. F. Mitenkova, and E. V. Solov'eva, “Fission matrix in the TDMCC program for calculating weakly coupled systems”, Vopr. At. Nauki Tekh. Ser. Yad.-Reakt. Konstanty, 2019, no. 2, 31–35 (in Russian)

[12] F. R. Gantmakher, Matrix Theory, Fizmatlit, M., 2004 (in Russian) | MR

[13] E. A. Biberdorf, E. F. Mitenkova, T. V. Semenova, and E. V. Solov'eva, “Method of associated invariant subspaces in problems of neutron distribution in weakly coupled systems”, Vopr. At. Nauki Tekh. Ser. Mat. Model. Fiz. Protsess., 2022, no. 2, 3–16 (in Russian) | DOI

[14] V. G. Bun'kov, S. K. Godunov, V. B. Kurzin, and M. Sadkane, “Application of the new mathematical apparatus ‘One-dimensional spectral portraits of a matrix’ to solving the problem of aeroelastic vibrations of blade arrays”, Uch. Zap. TsAGI, 40:6 (2009), 3–13 (in Russian)