Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_4_a5, author = {A. E. Mamontov and D. A. Prokudin}, title = {Existence of solutions of the boundary value problem for the equations of barotropic flows of a multicomponent medium. {I.} {Statement} of the main problem. {Solvability} of an auxiliary problem}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {77--92}, publisher = {mathdoc}, volume = {26}, number = {4}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a5/} }
TY - JOUR AU - A. E. Mamontov AU - D. A. Prokudin TI - Existence of solutions of the boundary value problem for the equations of barotropic flows of a multicomponent medium. I. Statement of the main problem. Solvability of an auxiliary problem JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 77 EP - 92 VL - 26 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a5/ LA - ru ID - SJIM_2023_26_4_a5 ER -
%0 Journal Article %A A. E. Mamontov %A D. A. Prokudin %T Existence of solutions of the boundary value problem for the equations of barotropic flows of a multicomponent medium. I. Statement of the main problem. Solvability of an auxiliary problem %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 77-92 %V 26 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a5/ %G ru %F SJIM_2023_26_4_a5
A. E. Mamontov; D. A. Prokudin. Existence of solutions of the boundary value problem for the equations of barotropic flows of a multicomponent medium. I. Statement of the main problem. Solvability of an auxiliary problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 4, pp. 77-92. http://geodesic.mathdoc.fr/item/SJIM_2023_26_4_a5/
[1] Rajagopal K. L., Tao L., Mechanics of mixtures, World Scientific, N. J., 1995 | MR | Zbl
[2] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Nauka, M., 1987 (in Russian)
[3] Mamontov A. E., Prokudin D. A., “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Siberian Electron. Math. Rep., 14 (2017), 388–397 | MR | Zbl
[4] V. N. Dorovskii and Yu. V. Perepechko, “Phenomenological description of two-velocity media with relaxing tangential stresses”, Prikl. Mekh. Tekh. Fiz., 1992, no. 3, 97–104 (in Russian)
[5] A. M. Blokhin and V. N. Dorovskii, Problems of Mathematical Modeling in the Theory of Multivelocity Continuum, OIGGM, Novosibirsk, 1994 (in Russian)
[6] Frehse J., Goj S., Malek J., “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl
[7] Frehse J., Weigant W., “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319–345 | DOI | MR | Zbl
[8] A. E. Mamontov and D. A. Prokudin, “Solvability of a stationary boundary value problem for equations of polytropic motion of viscous compressible multifluid media”, Sib. Elektron. Mat. Izv., 13 (2016), 664–693 (in Russian) | Zbl
[9] V. G. Maz'ya, Sobolev Spaces, Izd. Leningrad. Univ., L., 1985 (in Russian) | MR
[10] S. M. Nikol'skii, Approximation of Functions of Several Variables and Embedding Theorems, Nauka, M., 1977 (in Russian) | MR
[11] V. A. Trenogin, Functional Analysis, Fizmatlit, M., 2002 (in Russian) | MR
[12] Novotný A., Straškraba I., Introduction to the mathematical theory of compressible flow, Oxford University Press, Oxford, 2004 | MR | Zbl
[13] Mucha P., Pokorny M., “Weak solutions to equations of steady compressible heat conducting fluids”, Math. Models Methods Appl. Sci., 20:5 (2010), 785–813 | DOI | MR | Zbl
[14] O. A. Ladyzhenskaya, Boundary Value Problems of Mathematical Physics, Nauka, M., 1973 (in Russian) | MR
[15] L. A. Solonnikov, “On general boundary value problems for systems of Douglis—Nirenberg elliptic equations. II”, Trudy Mat. Inst. Steklov, 42, 1966, 233–297 (in Russian)
[16] Agmon S., Douglis A., Nirenberg L., “Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. II”, Comm. Pure Appl. Math., 17 (1964), 35–92 | DOI | MR | Zbl