On~the~time of~the~first level achievement for~the~ascending-descending process
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 86-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a stochastic process whose trajectories are characterized by alternate linear growth and linear decrease during time intervals of random length; the process can also keep its value during random intervals of time between growth and decrease. This process can be considered as a mathematical model of accumulation and consumption of materials, when random periods of time are combined for accumulation, spending and interruptions in operation. We study mean value $\mathbf{E} N$ of the first achievement time a fixed level for trajectories of this process, including finding exact formulas for $\mathbf{E} N$, estimating from above with an inequality and obtaining the asymptotics of $\mathbf{E} N$ under an infinitely receding level.
Keywords: stochastic inventory control models, stochastic process, random walk, first passage time.
@article{SJIM_2023_26_3_a6,
     author = {V. I. Lotov},
     title = {On~the~time of~the~first level achievement for~the~ascending-descending process},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {86--94},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a6/}
}
TY  - JOUR
AU  - V. I. Lotov
TI  - On~the~time of~the~first level achievement for~the~ascending-descending process
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 86
EP  - 94
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a6/
LA  - ru
ID  - SJIM_2023_26_3_a6
ER  - 
%0 Journal Article
%A V. I. Lotov
%T On~the~time of~the~first level achievement for~the~ascending-descending process
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 86-94
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a6/
%G ru
%F SJIM_2023_26_3_a6
V. I. Lotov. On~the~time of~the~first level achievement for~the~ascending-descending process. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 86-94. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a6/

[1] Borovkov A. A., Stochastic processes in queueing theory, Springer Verl, London, 1976 | MR | Zbl

[2] Borovkov A.A., Probability Theory, Springer Verl, London, 2013 | MR | Zbl

[3] Lotov V. I., “An approach to problems with two boundaries”, Statistics and control of random processes, Nauka, M., 1989, 117–121 (in Russian)

[4] Lotov V.I., “Exact formulas in some boundary crossing problems for integer-valued random walks”, Izv. RAN. Ser. Mat., 87:1 (2023), 49–64 | DOI | MR

[5] Lorden G., “On the excess over the boundary”, Ann. Math. Stat., 41 (1970), 520–527 | DOI | MR | Zbl

[6] Gut A., Stopped Random Walks. Limit Theorems and Applications, Springer-Verl, N. Y., 1988 | MR | Zbl

[7] Nagaev A. V., “On a method of computing the moments of a ladder variables”, Theory Probab. Appl., 30:3 (1986), 569–572 | DOI | MR | Zbl | Zbl

[8] Nagaev S. V., “Exact expressions for the moments of ladder heights”, Siberian Mathematical Journal, 51:4 (2010), 675–695 | DOI | MR | Zbl