On~the~integrability and~stability of~stationary solutions of~the~Goryachev---Sretensky gyrostat
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 56-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The equations of motion of the Goryachev-Sretensky gyrostat are studied. All stationary solutions are found on the invariant set of the zero level of the area integral and their stability is analyzed. For the case where the suspension point coincides with the center of mass and the action of a gyroscopic moment of a special type, integration in quadratures is performed.
Keywords: Goryachev—Sretensky gyrostat, stationary solutions, stability, quadrature integration.
@article{SJIM_2023_26_3_a4,
     author = {A. A. Kosov and E. I. Semenov},
     title = {On~the~integrability and~stability of~stationary solutions {of~the~Goryachev---Sretensky} gyrostat},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {56--72},
     publisher = {mathdoc},
     volume = {26},
     number = {3},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a4/}
}
TY  - JOUR
AU  - A. A. Kosov
AU  - E. I. Semenov
TI  - On~the~integrability and~stability of~stationary solutions of~the~Goryachev---Sretensky gyrostat
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 56
EP  - 72
VL  - 26
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a4/
LA  - ru
ID  - SJIM_2023_26_3_a4
ER  - 
%0 Journal Article
%A A. A. Kosov
%A E. I. Semenov
%T On~the~integrability and~stability of~stationary solutions of~the~Goryachev---Sretensky gyrostat
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 56-72
%V 26
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a4/
%G ru
%F SJIM_2023_26_3_a4
A. A. Kosov; E. I. Semenov. On~the~integrability and~stability of~stationary solutions of~the~Goryachev---Sretensky gyrostat. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 3, pp. 56-72. http://geodesic.mathdoc.fr/item/SJIM_2023_26_3_a4/

[1] Golubev V.V., Lectures on the integration of the equations of motion of a rigid body around a fixed point, Gostekhizdat, M., 1953 (in Russian) | MR

[2] Borisov A.V., Mamaev I.S., Rigid Body Dynamics, Pabl. NIC «Reguljarnaja i haoticheskaja dinamika», Izhevsk, 2001 (in Russian) | MR

[3] Gashenenko I.N., Gorr G.V., Kovalev A.M., Classical problems of rigid body dynamics, Naukova dumka, Kiev, 2012 (in Russian)

[4] Gorjachev D.N., “On the motion of a heavy rigid body around a fixed point in the case $A=B=4C$”, Mat. Sbornik, 21:3 (1900), 431–438 (in Russian)

[5] Chaplygin S.A., “A new case of rotation of a heavy rigid body supported at one point”, Tr. Otd. Fiz. Nauk Obshchestva Lyubitelei Estestvoznaniya, 10:3 (1901), 32–34 (in Russian)

[6] Sretenskij L.N., “On some cases of integrability of the equations of motion of a gyrostat”, Dokl. AN SSSR, 149:2 (1963), 292–294 (in Russian) | Zbl

[7] Kozlov V.V., Qualitative Analysis Methods in Rigid Body Dynamics, Pabl. NIC «Reguljarnaja i Haoticheskaja Dinamika», Izhevsk, 2000 (in Russian) | MR

[8] Polekhin I.Yu., “Precession of the Kovalevskaya and Goryachev—Chaplygin tops”, Regular and Chaotic Dynamics, 24:3 (2019), 281–297 | DOI | MR | Zbl

[9] Gashenenko I.N., “On D.N. Goryachev's decision”, Solid State Mechanics [Mehanika Tverdogo Tela, 2009, no. 39, 29–41 (in Russian) | MR | Zbl

[10] Harlamov M.P., Topological analysis of integrable problems of rigid body dynamics, Izd-vo LGU, L., 1988 (in Russian) | MR

[11] Markeev A.P., “On identical resonance in one particular case of the problem of stability of periodic motions of a rigid body”, Izv. RAN. MTT, 2003, no. 3, 32–37 (in Russian)

[12] Bardin B.S., “On the problem of stability of pendulum motions of a rigid body in the case of Goryachev—Chaplygin”, Izv. RAN. MTT, 2007, no. 2, 14–21 (in Russian)

[13] Gorr G.V., Maznev A.V., “On solutions of the equations of motion of a rigid body in a potential force field in the case of a constant modulus of angular momentum”, Mehanika Tverdogo Tela, 2017, no. 47, 12–24 (in Russian) | MR

[14] Yehia H.M., “Regular precession of a rigid body (gyrostat) acted upon by an irreducible combination of three classical fields”, J. Egyptian. Math. Soc., 25 (2017), 216–219 | DOI | MR | Zbl

[15] Zyza A.V., “Computer study of polynomial solutions of equations of gyrostat dynamics”, Komp'juternye issledovanija i modelirovanie, 10:1 (2018), 7–25 (in Russian) | DOI | MR

[16] Kosov A.A., Semenov E.I., “On first integrals and stability of stationary motions of gyrostat”, Physica D: Nonlinear Phenomena, 430 (2022), 133103 | DOI | MR | Zbl

[17] Kozlov V.V., “On the problem of rotation of a rigid body in a magnetic field”, Izv. AN SSSR. MTT, 1985, no. 6, 28–33 (in Russian) | Zbl

[18] Chetaev N.G., Movement stability. Works on analytical mechanics, Izd-vo AN SSSR, M., 1962 (in Russian) | MR

[19] Rubanovskij V.N., Samsonov V.A., Stability of stationary motions in examples and problems, Nauka, M., 1988 (in Russian)

[20] Prudnikov A.P, Brychkov Ju.A, Marichev O.I., Integrals and series, Nauka, M., 1981 (in Russian) | MR