Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a15, author = {P. A. Chuprov and S. V. Fortova and P. S. Utkin}, title = {Numerical investigation of the interaction between shock wave and aqueous foam with compaction}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {204--214}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/} }
TY - JOUR AU - P. A. Chuprov AU - S. V. Fortova AU - P. S. Utkin TI - Numerical investigation of the interaction between shock wave and aqueous foam with compaction JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 204 EP - 214 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/ LA - ru ID - SJIM_2023_26_2_a15 ER -
%0 Journal Article %A P. A. Chuprov %A S. V. Fortova %A P. S. Utkin %T Numerical investigation of the interaction between shock wave and aqueous foam with compaction %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 204-214 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/ %G ru %F SJIM_2023_26_2_a15
P. A. Chuprov; S. V. Fortova; P. S. Utkin. Numerical investigation of the interaction between shock wave and aqueous foam with compaction. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 204-214. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/
[1] O. Igra, J. Falcovitz, G. Jourdan, “Review of methods to attenuate shock/blast waves”, Prog. Aerosp. Sci, 58 (2013), 1–35 | DOI
[2] B. Kichatov, A. Korshunov, A. Kiverin, E. Son, “Foamed emulsion Fuel on the base of water-saturated oils”, Fuel, 203 (2017), 261–268 | DOI
[3] S. Sembian, M. Liverts, N. Apazidis, “Attenuation of strong external blast by foam barriers”, Phys. Fluids, 28:9 (2016), 096105 | DOI
[4] S. S. Ramamurthi K. Prasanna Kumar, B. S. Patnaik, “Numerical study of a foam-shock trap based blast mitigation strategy”, Phys. Fluids, 30:8 (2018), 086102 | DOI
[5] Baer M.R, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials”, Internat. J. Multiphase Flow, 12:6 (1986), 861–889 | DOI | MR | Zbl
[6] P. A. Chuprov, Ya. E. Poroshina, P. S. Utkin, “Chislennoe issledovanie deflagratsii porokha v ramkakh modeli Baera Nuntsiato”, Gorenie i vzryv, 13:3 (2020), 91–106
[7] P. Chuprov, P. Utkin, S. Fortova, “Numerical simulation of a high-speed impact of metal plates using a three-fluid model”, Metals, 11:8 (2021), 1233 | DOI
[8] P. S. Utkin, “Matematicheskoe modelirovanie vzaimodeistviya udarnoi volny s plotnoi zasypkoi chastits v ramkakh dvukhzhidkostnogo podkhoda”, Khim. fizika, 36:11 (2017), 61–71 | DOI
[9] M. R. Baer, “A numerical study of shock wave reflection on low density foam”, Shock Waves, 2 (1992), 121–124 | DOI | MR
[10] R. Saurel, N. Favrie, F. Petitpas, M. H. Lallemand, S. L. Gavrilyuk, “Modelling dynamic and irreversible powder compaction”, J. Fluid Mech, 664 (2010), 348–396 | DOI | MR | Zbl
[11] Y. E. Poroshyna, P. S. Utkin, “Numerical simulation of a normally incident shock wave-dense particles layer interaction using the Godunov solver for the Baer-Nunziato equations”, Internat. J. Multiphase Flow, 142 (2021), 103718 | DOI | MR
[12] R. Saurel, R. Abrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, J. Comput. Phys, 150:2 (1999), 425–467 | DOI | MR | Zbl
[13] W. E. Warren, A. M. Kraynik, “The nonlinear elastic behavior of open-cell foams”, J. Appl. Mech, 58:2 (1991), 376 | DOI | Zbl
[14] Rogue et al, “Experimental and numerical investigation of the shock-induced fluidization of a particles bed”, Shock Waves, 8:2 (1998), 29–45 | DOI | Zbl