Numerical investigation of the interaction between shock wave and aqueous foam with compaction
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 204-214.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using the system of Bayer—Nunziato equations, a numerical study of the interaction of an explosive wave with liquid foam was carried out. This problem is aimed at studying the influence of the compaction mechanism on the wave pattern of re-reflection. A computational algorithm based on the HLL method has been developed. Comparison of the results with computational experiments of other authors shows that taking into account the compaction mechanism leads to better results.
Keywords: numerical simulation, liquid foam, Baer—Nunziato system of equations, explosive waves. .
Mots-clés : compaction
@article{SJIM_2023_26_2_a15,
     author = {P. A. Chuprov and S. V. Fortova and P. S. Utkin},
     title = {Numerical investigation of the interaction between shock wave and aqueous foam with compaction},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {204--214},
     publisher = {mathdoc},
     volume = {26},
     number = {2},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/}
}
TY  - JOUR
AU  - P. A. Chuprov
AU  - S. V. Fortova
AU  - P. S. Utkin
TI  - Numerical investigation of the interaction between shock wave and aqueous foam with compaction
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 204
EP  - 214
VL  - 26
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/
LA  - ru
ID  - SJIM_2023_26_2_a15
ER  - 
%0 Journal Article
%A P. A. Chuprov
%A S. V. Fortova
%A P. S. Utkin
%T Numerical investigation of the interaction between shock wave and aqueous foam with compaction
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 204-214
%V 26
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/
%G ru
%F SJIM_2023_26_2_a15
P. A. Chuprov; S. V. Fortova; P. S. Utkin. Numerical investigation of the interaction between shock wave and aqueous foam with compaction. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 204-214. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a15/

[1] O. Igra, J. Falcovitz, G. Jourdan, “Review of methods to attenuate shock/blast waves”, Prog. Aerosp. Sci, 58 (2013), 1–35 | DOI

[2] B. Kichatov, A. Korshunov, A. Kiverin, E. Son, “Foamed emulsion Fuel on the base of water-saturated oils”, Fuel, 203 (2017), 261–268 | DOI

[3] S. Sembian, M. Liverts, N. Apazidis, “Attenuation of strong external blast by foam barriers”, Phys. Fluids, 28:9 (2016), 096105 | DOI

[4] S. S. Ramamurthi K. Prasanna Kumar, B. S. Patnaik, “Numerical study of a foam-shock trap based blast mitigation strategy”, Phys. Fluids, 30:8 (2018), 086102 | DOI

[5] Baer M.R, J. W. Nunziato, “A two-phase mixture theory for the deflagration-to-detonation transition in reactive granular materials”, Internat. J. Multiphase Flow, 12:6 (1986), 861–889 | DOI | MR | Zbl

[6] P. A. Chuprov, Ya. E. Poroshina, P. S. Utkin, “Chislennoe issledovanie deflagratsii porokha v ramkakh modeli Baera Nuntsiato”, Gorenie i vzryv, 13:3 (2020), 91–106

[7] P. Chuprov, P. Utkin, S. Fortova, “Numerical simulation of a high-speed impact of metal plates using a three-fluid model”, Metals, 11:8 (2021), 1233 | DOI

[8] P. S. Utkin, “Matematicheskoe modelirovanie vzaimodeistviya udarnoi volny s plotnoi zasypkoi chastits v ramkakh dvukhzhidkostnogo podkhoda”, Khim. fizika, 36:11 (2017), 61–71 | DOI

[9] M. R. Baer, “A numerical study of shock wave reflection on low density foam”, Shock Waves, 2 (1992), 121–124 | DOI | MR

[10] R. Saurel, N. Favrie, F. Petitpas, M. H. Lallemand, S. L. Gavrilyuk, “Modelling dynamic and irreversible powder compaction”, J. Fluid Mech, 664 (2010), 348–396 | DOI | MR | Zbl

[11] Y. E. Poroshyna, P. S. Utkin, “Numerical simulation of a normally incident shock wave-dense particles layer interaction using the Godunov solver for the Baer-Nunziato equations”, Internat. J. Multiphase Flow, 142 (2021), 103718 | DOI | MR

[12] R. Saurel, R. Abrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, J. Comput. Phys, 150:2 (1999), 425–467 | DOI | MR | Zbl

[13] W. E. Warren, A. M. Kraynik, “The nonlinear elastic behavior of open-cell foams”, J. Appl. Mech, 58:2 (1991), 376 | DOI | Zbl

[14] Rogue et al, “Experimental and numerical investigation of the shock-induced fluidization of a particles bed”, Shock Waves, 8:2 (1998), 29–45 | DOI | Zbl