Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_2_a12, author = {A. K. Urinov and M. S. Azizov}, title = {About an initial boundary problem for a degenerate higher even order partial differential equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {155--170}, publisher = {mathdoc}, volume = {26}, number = {2}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a12/} }
TY - JOUR AU - A. K. Urinov AU - M. S. Azizov TI - About an initial boundary problem for a degenerate higher even order partial differential equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 155 EP - 170 VL - 26 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a12/ LA - ru ID - SJIM_2023_26_2_a12 ER -
%0 Journal Article %A A. K. Urinov %A M. S. Azizov %T About an initial boundary problem for a degenerate higher even order partial differential equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 155-170 %V 26 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a12/ %G ru %F SJIM_2023_26_2_a12
A. K. Urinov; M. S. Azizov. About an initial boundary problem for a degenerate higher even order partial differential equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 2, pp. 155-170. http://geodesic.mathdoc.fr/item/SJIM_2023_26_2_a12/
[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1972 | MR
[2] B. G. Korenev, Voprosy rascheta balok i plit na uprugom osnovanii, Stroiizdat, M., 1954
[3] E. V. Makhover, “Izgib plastinki peremennoi tolschiny s ostrym kraem”, Uch. zap. LGP im. Gertsena, 17:2 (1957), 28–39
[4] E. V. Makhover, “O spektre sobstvennykh chastot plastinki s ostrym kraem”, Uch. zap. LGP im. Gertsena, 197 (1958), 113–118
[5] B. A. Bubnov, V. N. Vragov, “K teorii korrektnykh kraevykh zadach dlya nekotorykh klassov ultragi perbolicheskikh uravnenii”, Dokl. AN SSSR, 264:4 (1982), 795–800 | MR | Zbl
[6] I. E. Egorov, “Razreshimost odnoi kraevoi zadachi dlya uravneniya smeshannogo tipa vysokogo poryadka”, Differents. uravneniya, 23:9 (1987), 1560–1567 | MR | Zbl
[7] I. E. Fedorov I. E. Egorov, “O pervoi kraevoi zadache dlya odnogo uravneniya smeshannogo tipa vysokogo poryadka”, Metody prikl. matematiki i mat. fiziki, YaF SO AN SSSR, Yakutsk, 1987, 8–14 | MR
[8] I. E. Egorov, “Kraevaya zadacha dlya odnogo uravneniya vysokogo poryadka s menyayuschimsya napravleniem vremeni”, Dokl. AN SSSR, 303:6 (1988), 1301–1304
[9] A. I. Kozhanov, “O kraevykh zadachakh dlya nekotorykh klassov uravnenii vysokogo poryadka, nerazre shennykh otnositelno starshei proizvodnoi”, Sib. mat. zhurn., 35:2 (1994), 359–376 | MR | Zbl
[10] A. I. Kozhanov, N. R. Pinigina, “Kraevye zadachi dlya nekotorykh klassov uravnenii sostavnogo tipa vysokogo poryadka”, Sib. elektron. mat. izv, 12 (2015), 842–853 | Zbl
[11] R. R. Ashurov, A. T. Muhiddinova, “Initial-boundary value problem for a time-fractional subdiffusion equation with an arbitrary elliptic differential operator”, Lobachevskii J. Math., 42:3 (2021), 517–525 | DOI | MR | Zbl
[12] D. Amanov, “About correctness of boundary value problems for an equation of even order”, Uzbek Math. J., 2011, no. 4, 20–35 | MR
[13] D. Amanov, A. Ashuraliyev, “Well-posedness of boundary value problems for partial differential equations of even order”, First Internat. Conf. Anal. Appl. Math., 2012, 3–7 | MR
[14] A. K. Urinov, M. S. Azizov, “Nachalno-granichnaya zadacha dlya uravneniya v chastnykh proizvodnykh vysshego chetnogo poryadka s operatorom Besselya”, Vestn. Samar. gos. tekhn. un-ta. Ser. Fiz. mat. nauki, 26:2 (2022), 273–292 | DOI | Zbl
[15] A. K. Urinov, M. S. Azizov, “O razreshimosti nelokalnykh nachalno-granichnykh zadach dlya odnogo differentsialnogo uravneniya v chastnykh proizvodnykh vysokogo chetnogo poryadka”, Vestnyu Udmuryu un-ta. Matematika. Mekhanika. Kompyuternye nauki, 32:2 (2022), 240–255 | MR | Zbl
[16] M. S. Azizov, “Ob odnoi nachalno-granichnoi zadache dlya uravneniya v chastnykh proizvodnykh vysshego chetnogo poryadka s operatorom Besselya”, Byull. In-ta matematiki AN Respubliki Uz., 5:1 (2022), 14–24 | MR
[17] M. S. Azizov, “Ob odnoi nelokalnoi nachalno-granichnoi zadache dlya uravneniya v chastnykh proizvodnykh vysokogo chetnogo poryadka v pryamougolnike”, Byull. In-ta matematiki AN Respubliki Uz., 5:5 (2022), 112–133
[18] I. A. Kipriyanov, Singulyarnye ellipticheskie kraevye zadachi, Nauka, M., 1997 | MR
[19] K. B. Sabitov, “Zadacha Dirikhle dlya uravnenii s chastnymi proizvodnymi vysokikh poryadkov”, Mat. zametki, 97:2 (2015), 262–276 | DOI | Zbl
[20] B. Yu. Irgashev, “O spektralnoi zadache dlya odnogo uravneniya vysokogo chetnogo poryadka”, Izv. vuzov. Matematika, 2016, no. 7, 44–54 | MR | Zbl
[21] Yu. P. Apakov, B. Yu. Irgashev, “Kraevaya zadacha dlya vyrozhdayuschegosya uravneniya vysokogo nechetnogo poryadka”, Ukrain. mat. zhurn., 66:10 (2014), 1348–1331
[22] K. B. Sabitov, O. V. Fadeeva, “Nachalno-granichnaya zadacha dlya uravneniya vynuzhdennykh kolebanii konsolnoi balki”, Vestn. Samar. gos. un-ta. Ser. Fiz. mat. nauki, 25:1 (2021), 51–66 | DOI | Zbl
[23] K. B. Baikuziev, B. S. Kalanov, “O razreshimosti smeshannoi zadachi dlya uravneniya vysshego poryadka, vyrozhdayuschegosya na granitse oblasti”, Kraevye zadachi dlya differentsialnykh uravnenii, 2 (1972), 40–54 | MR
[24] K. B. Baikuziev, B. S. Kalanov, “O razreshimosti smeshannoi zadachi dlya uravneniya vysshego poryadka, vyrozhdayuschegosya na granitse oblasti”, Kraevye zadachi dlya differentsialnykh uravnenii, 3 (1973), 65–73 | MR | Zbl
[25] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. I, Nauka, M., 1965 | MR
[26] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969
[27] S. G. Mikhlin, Lektsii po lineinym integralnym uravneniyam, Fizmatlit, M., 1959
[28] Dzh. N. Vatson, Teorii besselevykh funktsii, Izd-vo inostr. lit-ry, M., 1949