Numerical simulation of elastic turbulence in a confined two-dimensional cell
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 55-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical model that approximates the system of equations of a viscous fluid with the use of polymeric molecules is described. This model is hybrid and is based on the application of Godunov linearized and finite-difference schemes. This scheme is used to calculate a Kolmogorov-type problem - a viscous flow in a confined area (a square cell) under the action of an external periodic force. The flow with and without impurity is compared, the behavior of polymer molecules in different flow regions is studied. A transition regime characterized by almost complete stretching of molecules in regions of high velocity gradient is obtained.
Keywords: numerical methods in hydrodynamics, elastic turbulence, hydrodynamic instability, non-Newtonian fluid, Kolmogorov’s problem. .
@article{SJIM_2023_26_1_a4,
     author = {V. V. Denisenko and S. V. Fortova},
     title = {Numerical simulation of elastic turbulence in a confined two-dimensional cell},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {55--64},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a4/}
}
TY  - JOUR
AU  - V. V. Denisenko
AU  - S. V. Fortova
TI  - Numerical simulation of elastic turbulence in a confined two-dimensional cell
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 55
EP  - 64
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a4/
LA  - ru
ID  - SJIM_2023_26_1_a4
ER  - 
%0 Journal Article
%A V. V. Denisenko
%A S. V. Fortova
%T Numerical simulation of elastic turbulence in a confined two-dimensional cell
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 55-64
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a4/
%G ru
%F SJIM_2023_26_1_a4
V. V. Denisenko; S. V. Fortova. Numerical simulation of elastic turbulence in a confined two-dimensional cell. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 55-64. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a4/

[1] R. B. Bird, R. C. Armstrong, O. Hassager, Fluid Mechanics, v. 1, Dynamics of Polymeric Liquids, Wiley, 1977

[2] A. Groisman, V. Steinberg, “Elastic turbulence in a polymer solution flow”, Nature, 405 (2000), 53–55 | DOI

[3] A. Groisman, V. Steinberg, “Efficient mixing at low Reynolds numbers using polymer additives”, Nature, 2001, no. 410, 905–908 | DOI

[4] A. Groisman, V. Steinberg, “Elastic turbulence in curvilinear flows of polymer solutions”, New J. Phys., 2004, no. 6, 29 | DOI

[5] S. Gerashchenko, C. Chevallard, V. Steinberg, “Single-polymer dynamics: coil-stretch transition in a random flow”, Europhys. Lett., 71 (2005), 221–227 | DOI

[6] T. Burghelea, E. Segre, V. Steinberg, “Role of elastic stress in statistical and scaling properties of elastic turbulence”, Phys. Rev. Lett., 96 (2006), 214502 | DOI

[7] T. Burghelea, E. Segre, V. Steinberg, “Elastic turbulence in von Karman swirling flow between two disks”, Phys. Fluids, 19 (2007), 053104 | DOI | Zbl

[8] E. Balkovsky, A. Fouxon, A. Lebedev, “Turbulent dynamics of polymer solutions”, Phys. Rev. Lett., 84 (2000), 4765–4768 | DOI

[9] M. Chertkov, “Polymer stretching by turbulence”, Phys. Rev. Lett., 84 (2000), 4761–4764 | DOI

[10] A. Fouxon, V. Lebedev, “Spectra of turbulence in dilute polymer solutions”, Phys. Fluids, 15 (2003), 2060–2072 | DOI

[11] L. Pan, A. Morozov, C. Wagner, P. E. Arratia, “Nonlinear elastic instability in channel flows at low Reynolds numbers”, Phys. Rev. Lett., 110 (2013), 174502 | DOI

[12] H. Bodiguel, J. Beaumont, A. Machado, L. Martinie, H. Kellay, A. Colin, “Flow enhancement due to elastic turbulence in channel flows of shear thinning fluids”, Phys. Rev. Lett., 114 (2015), 028302 | DOI

[13] S. Berti, A. Bistagnino, G. Boffetta, A. Celani, S. Musacchio, “Two-dimensional elastic turbulence”, Phys. Rev. E, 77 (2008), 055306(R) | DOI

[14] S. Berti, G. Boffetta, “Elastic waves and transition to elastic turbulence in a two-dimensional viscoelastic Kolmogorov flow”, Phys. Rev. E, 82 (2010), 036314 | DOI

[15] Anupam Gupta, Dario Vincenzi, “Effect of polymer-stress diffusion in the numerical simulation of elastic turbulence”, J. Fluid Mech., 870 (2019), 405–418 | DOI | MR | Zbl

[16] S. Godunov, V. Denisenko, D. Klyuchinskiy, S. Fortova, V. Shepelev, “Study of entropy properties of a linearized version of Godunov's method”, Comput. Math. Math. Phys., 60:8 (2020), 628–640 | DOI | MR | Zbl