Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a3, author = {S. V. Dvoynishnikov and G. V. Bakakin and V. O. Zuev and V. G. Meledin}, title = {Adaptive data processing algorithm under the conditions of additive photodetector interference in the problems of measuring three-dimensional geometry by phase triangulation methods}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {47--54}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a3/} }
TY - JOUR AU - S. V. Dvoynishnikov AU - G. V. Bakakin AU - V. O. Zuev AU - V. G. Meledin TI - Adaptive data processing algorithm under the conditions of additive photodetector interference in the problems of measuring three-dimensional geometry by phase triangulation methods JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 47 EP - 54 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a3/ LA - ru ID - SJIM_2023_26_1_a3 ER -
%0 Journal Article %A S. V. Dvoynishnikov %A G. V. Bakakin %A V. O. Zuev %A V. G. Meledin %T Adaptive data processing algorithm under the conditions of additive photodetector interference in the problems of measuring three-dimensional geometry by phase triangulation methods %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 47-54 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a3/ %G ru %F SJIM_2023_26_1_a3
S. V. Dvoynishnikov; G. V. Bakakin; V. O. Zuev; V. G. Meledin. Adaptive data processing algorithm under the conditions of additive photodetector interference in the problems of measuring three-dimensional geometry by phase triangulation methods. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 47-54. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a3/
[1] S. S. Gorthi, P. Rastogi, Fringe projection techniques: Whither we are?, Optics and Lasers Engrg, 2010, no. 48, 133–140 | DOI
[2] M. Gruber, G. Hausler, “Simple robust and accurate phase-measuring triangulation”, Optik, 1992, no. 3, 118–122 | MR
[3] S. V. Dvoinishnikov, V. G. Meledin, V. G. Glavnyi, I. V. Naumov, A. S. Chubov, “Otsenka optimalnoi chastoty prostranstvennoi modulyatsii izlucheniya 3D-izmerenii”, Izmerit. tekhnika, 2015, no. 5, 24–27
[4] S. V. Dvoynishnikov, V. V. Rakhmanov, I. K. Kabardin, V. G. Meledin, “Phase triangulation method with spatial modulation frequency optimization”, Measurement, 145 (2019), 63–70 | DOI
[5] P. Wankhede, S. Kodey, Kurra S, S. Radhika, “A low cost surface strain measurement system using image processing for sheet metal forming applications”, Measurement, 187 (2022), 110273 | DOI
[6] A. Rudyk, A. Semenov, N. Kryvinska, O. Semenova, “Study of phase and amplitude-phase methods for measuring a reactive element quality factor”, Measurement, 187 (2022) | DOI
[7] Y. Jiang, S. Wang, H. Qin, B. Li, Q. Li, “Similarity quantification of 3D surface topography measurements”, Measurement, 186 (2021), 110207 | DOI
[8] Y. Dong, Z. Li, L. Zhu, X. Zhang, “Topography measurement and reconstruction of inner surfaces based on white light interference”, Measurement, 186 (2021), 110199 | DOI
[9] F. Guo, B. Yang, W. Zheng, S. Liu, “Power frequency estimation using sine filtering of optimal initial phase”, Measurement, 186 (2021), 110165 | DOI
[10] J. Fan, Y. Feng, J. Mo, S. Liang Q. Wang, “3D reconstruction of non-textured surface by combining shape from shading and stereovision”, Measurement, 185 (2021), 110029 | DOI
[11] H. Wang, J. Ma, H. Yang, F. Sun, Y. Wei, L. Wang, “Development of three-dimensional pavement texture measurement technique using surface structured light projection”, Measurement, 185 (2021), 110003 | DOI
[12] B. Shi, Z. Ma, X. Ni, J. Liu, H. Liu, “A phase unwrapping method suitable for high frequency fringe based on edge feature”, Measurement, 185 (2021), 109938 | DOI
[13] Y. Zhang, N. Fan, Y. Wu, G. Wu, H. Luo, J. Yan, S. Yang, F. Liu, “Four-pattern phase-step non sensitive phase shifting method based on Carre algorithm”, Measurement, 171 (2021), 108762 | DOI
[14] T. Luhmann, “Close range photogrammetry for industrial applications”, J. Photogramm. Remote Sens., 65:6 (2010), 558–569 | DOI
[15] B. Li, Y. An, D. Capelleri, J. Xu, S. Zhang, “High-accuracy high-speed 3D structured light imaging techniques and potential applications to intelligent robotics”, Internat. J. Intell. Robot. Appl., 1:1 (2017), 86–103 | DOI
[16] S. Matthias, M. Kastner, E. Reithmeier, “Evaluation of system models for an endoscopic fringe projection system”, Measurement, 73 (2015), 239–246 | DOI
[17] C. Chu, H. Yang, L. Wang, “Design of a pavement scanning system based on structured light of interference fringe”, Measurement, 145 (2019), 410–418 | DOI
[18] T. Koutecky, D. Palousek, J. Brandejs, “Sensor planning system for fringe projection scanning of sheet metal parts”, Measurement, 94 (2016), 60–70 | DOI
[19] X. Cao, W. Xie, S. M. Ahmed, C. R. Li, “Defect detection method for rail surface based on line-structured light”, Measurement, 159 (2020), 107771 | DOI
[20] S. V. Dvoinishnikov, “Ustoichivyi metod rasshifrovki interferogramm s poshagovym sdvigom”, Kompyut. optika, 31:2 (2007), 21–25
[21] S. V. Dvoinishnikov, V. G. Meledin, Sposob beskontaktnogo izmereniya lineinykh razmerov trekhmernykh ob'ektov, Patent RF # 2433372, prioritet 10.11.11
[22] S. V. Dvoinishnikov, V. G. Meledin, Sposob beskontaktnogo izmereniya geometrii trekhmernykh ob'ektov, Patent RF No 2439489, prioritet 15.09.2010