Modeling of a single bubble dynamics at boiling by lattice Boltzmann method
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 191-200.

Voir la notice de l'article provenant de la source Math-Net.Ru

To study the process of boiling on a solid heater surface, a hybrid model based on lattice Boltzmann method (LBM) and heat transfer equation is presented. The process of formation and rise of a single bubble during boiling over a single lyophobic zone located on a smooth lyophilic surface was studied. Dependences of the bubble detachment frequency and bubble detachment diameter on the width of the lyophobic zone and the wall superheat were obtained. It is shown that the bubble detachment diameter increases with the width of the lyophobic zone, and the frequency of bubble detachment increases with the wall superheat. Based on the obtained data, the optimal size of the lyophobic zone on the lyophilic surface was determined from the point of view of heat transfer enhancement.
Keywords: enhancement of heat transfer at boiling, biphilic surfaces, lattice Boltzmann method. .
@article{SJIM_2023_26_1_a16,
     author = {A. V. Fedoseev and M. V. Sal'nikov and A. E. Ostapchenko},
     title = {Modeling of a single bubble dynamics at boiling by lattice {Boltzmann} method},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {191--200},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/}
}
TY  - JOUR
AU  - A. V. Fedoseev
AU  - M. V. Sal'nikov
AU  - A. E. Ostapchenko
TI  - Modeling of a single bubble dynamics at boiling by lattice Boltzmann method
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 191
EP  - 200
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/
LA  - ru
ID  - SJIM_2023_26_1_a16
ER  - 
%0 Journal Article
%A A. V. Fedoseev
%A M. V. Sal'nikov
%A A. E. Ostapchenko
%T Modeling of a single bubble dynamics at boiling by lattice Boltzmann method
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 191-200
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/
%G ru
%F SJIM_2023_26_1_a16
A. V. Fedoseev; M. V. Sal'nikov; A. E. Ostapchenko. Modeling of a single bubble dynamics at boiling by lattice Boltzmann method. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 191-200. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/

[1] G. Liang, I. Mudawar, “Review of pool boiling enhancement by surface modification”, Internat. J. Heat Mass Transfer, 128 (2019), 892–933 | DOI

[2] Y. Nam, J. Wu, G. Warrier, Y. Sungtaek, “Experimental and numerical study of single bubble dynamics on a hydrophobic surface”, J. Heat Transfer., 131, N 12 (2009) | DOI | Zbl

[3] H. T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, “Surface wettability controlled by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism”, Internat. J. Heat Mass Transfer, 52 (2009), 5459–5471 | DOI

[4] Y. Li, K. Zhanga, M. C. Lu, C. Duan, “Single bubble dynamics on superheated superhydropho-bic surfaces”, Internat. J. Heat Mass Transfer, 99 (2016), 521–531 | DOI

[5] E. Teodori, T. Valente, I. Malavasi, A. S. Moita, M. Marengo, A. L.N. Moreira, “Effect of extreme wetting scenarios on pool boiling conditions”, Appl. Thermal Engrg, 115 (2017), 1424–1437 | DOI

[6] B. Bourdon, R. Rioboo, M. Marengo, E. Gosselin, J. De Coninck, “Influence of the wettability on the boiling onset”, Langmuir, 28:2 (2012), 1618–1624 | DOI | MR

[7] A. R. Betz, J. Jenkins, C. J. Kim, D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces”, Internat. J. Heat Mass Transfer, 57:2 (2013), 733–741 | DOI

[8] S. H. Kim, G. C. Lee, J. Y. Kang, K. Moriyama, H. S. Park, M. H. Kim, “The role of surface energy in heterogeneous bubble growth on ideal surface”, Internat. J. Heat Mass Transfer, 108 (2017), 1901–1909 | DOI

[9] A. L. Kupershtokh, D. A. Medvedev, D. I. Karpov, “On equations of state in a lattice Boltzmann method”, Comput. Math. Appl., 58:5 (2009), 965–974 | MR | Zbl

[10] S. Gong, P. Cheng, “Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows”, Comput. Fluids, 53 (2012), 93–104 | DOI | MR | Zbl

[11] Q. Li, Q. J. Kang, M. M. Francois, Y. L. He, K. H. Luo, “Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability”, Internat. J. Heat Mass Transfer, 85 (2015), 787–796 | DOI

[12] S. Gong, P. Cheng, “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling”, Internat. J. Heat Mass Transfer, 64 (2013), 122–132 | DOI

[13] A. V. Fedoseev, A. S. Surtaev, M. I. Moiseev, A. E. Ostapchenko, “Lattice Boltzmann simulation of bubble evolution at boiling on surfaces with different wettability”, J. Phys. Conf. Series, 1677 (2020), 012085 | DOI

[14] Q. Li, Y. Yu, P. Zhou, H. J. Yan, “Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: A lattice Boltzmann study”, Appl. Thermal Engrg., 132 (2018), 490–499 | DOI

[15] D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer-Verl, N.Y., 2005 | MR

[16] X. He, L. S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Phys. Rev. E, 56:6 (1997), 6811 | DOI | MR

[17] X. Shan, X. F. Yuan, H. Chen, “Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation”, J. Fluid Mech., 550 (2006), 413 | DOI | MR | Zbl

[18] Y. H. Qian, D. d'Humieres, P. Lallemand, “Lattice BGK models for Navier-Stokes equation”, Europhys. Lett., 17:6 (1992), 479 | DOI | Zbl

[19] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Univ. Press, Oxford, 2001 | MR

[20] P. L. Bhatnagar, E. P. Gross, M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94 (1954), 511–525 | DOI | Zbl

[21] H. Chen, S. Chen, W. H. Matthaeus, “Recovery of the Navier-Stokes equation using a lattice-gas Boltzmann method”, Phys. Rev. A, 45 (1992), R5339–R5342 | DOI

[22] A. L. Kupershtokh, “Modelirovanie techenii s granitsami razdela faz zhidkost-par metodom reshetochnykh uravnenii Boltsmana”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 29–42 | Zbl

[23] A. L. Kupershtokh, “Modelirovanie dvukhfaznykh techenii zhidkost-par metodom reshetochnykh uravnenii Boltsmana”, Sb. trudov Vserossiiskoi konf. «28 Sibirskii teplofizicheskii seminar» (Novosibirsk, 2005), 1–22

[24] A. L. Kupershtokh, C. Stamatelatos, D. P. Agoris, “Stochastic model of partial discharge activity in liquid and solid dielectrics”, Proc. 15 IEEE Internat. Conf. Dielectric Liquids (Coimbra, 2005), 135–138

[25] A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos, V. P. Charalambakos, E. C. Pyrgioti, D. P. Agoris, “Stochastic models of partial discharge activity in solid and liquid dielectrics”, IET Sci. Meas. Technol., 1:6 (2007), 303–311 | DOI

[26] A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos, V. P. Charalambakos, E. C. Pyrgioti, D. P. Agoris, “Stochastic models of partial discharge activity in solid and liquid dielectrics”, IET Sci. Meas. Technol., 1:6 (2007), 303–311 | DOI

[27] P. Yuan, L. Schaefer, “Equations of state in a lattice Boltzmann model”, Phys. Fluids, 18 (2006), 042101 | DOI | MR | Zbl

[28] D. Y. Peng, Robinson, D. B., “A New two-constant equation of state”, Indust. Engrg. Chemistry. Fundamentals, 15 (1976), 59–64 | DOI | MR | Zbl

[29] S. Blundell, K. M. Blundell, Concepts in Thermal Physics, Univ. Press, Oxford, 2006 | Zbl