Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2023_26_1_a16, author = {A. V. Fedoseev and M. V. Sal'nikov and A. E. Ostapchenko}, title = {Modeling of a single bubble dynamics at boiling by lattice {Boltzmann} method}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {191--200}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/} }
TY - JOUR AU - A. V. Fedoseev AU - M. V. Sal'nikov AU - A. E. Ostapchenko TI - Modeling of a single bubble dynamics at boiling by lattice Boltzmann method JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2023 SP - 191 EP - 200 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/ LA - ru ID - SJIM_2023_26_1_a16 ER -
%0 Journal Article %A A. V. Fedoseev %A M. V. Sal'nikov %A A. E. Ostapchenko %T Modeling of a single bubble dynamics at boiling by lattice Boltzmann method %J Sibirskij žurnal industrialʹnoj matematiki %D 2023 %P 191-200 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/ %G ru %F SJIM_2023_26_1_a16
A. V. Fedoseev; M. V. Sal'nikov; A. E. Ostapchenko. Modeling of a single bubble dynamics at boiling by lattice Boltzmann method. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 191-200. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a16/
[1] G. Liang, I. Mudawar, “Review of pool boiling enhancement by surface modification”, Internat. J. Heat Mass Transfer, 128 (2019), 892–933 | DOI
[2] Y. Nam, J. Wu, G. Warrier, Y. Sungtaek, “Experimental and numerical study of single bubble dynamics on a hydrophobic surface”, J. Heat Transfer., 131, N 12 (2009) | DOI | Zbl
[3] H. T. Phan, N. Caney, P. Marty, S. Colasson, J. Gavillet, “Surface wettability controlled by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism”, Internat. J. Heat Mass Transfer, 52 (2009), 5459–5471 | DOI
[4] Y. Li, K. Zhanga, M. C. Lu, C. Duan, “Single bubble dynamics on superheated superhydropho-bic surfaces”, Internat. J. Heat Mass Transfer, 99 (2016), 521–531 | DOI
[5] E. Teodori, T. Valente, I. Malavasi, A. S. Moita, M. Marengo, A. L.N. Moreira, “Effect of extreme wetting scenarios on pool boiling conditions”, Appl. Thermal Engrg, 115 (2017), 1424–1437 | DOI
[6] B. Bourdon, R. Rioboo, M. Marengo, E. Gosselin, J. De Coninck, “Influence of the wettability on the boiling onset”, Langmuir, 28:2 (2012), 1618–1624 | DOI | MR
[7] A. R. Betz, J. Jenkins, C. J. Kim, D. Attinger, “Boiling heat transfer on superhydrophilic, superhydrophobic, and superbiphilic surfaces”, Internat. J. Heat Mass Transfer, 57:2 (2013), 733–741 | DOI
[8] S. H. Kim, G. C. Lee, J. Y. Kang, K. Moriyama, H. S. Park, M. H. Kim, “The role of surface energy in heterogeneous bubble growth on ideal surface”, Internat. J. Heat Mass Transfer, 108 (2017), 1901–1909 | DOI
[9] A. L. Kupershtokh, D. A. Medvedev, D. I. Karpov, “On equations of state in a lattice Boltzmann method”, Comput. Math. Appl., 58:5 (2009), 965–974 | MR | Zbl
[10] S. Gong, P. Cheng, “Numerical investigation of droplet motion and coalescence by an improved lattice Boltzmann model for phase transitions and multiphase flows”, Comput. Fluids, 53 (2012), 93–104 | DOI | MR | Zbl
[11] Q. Li, Q. J. Kang, M. M. Francois, Y. L. He, K. H. Luo, “Lattice Boltzmann modeling of boiling heat transfer: The boiling curve and the effects of wettability”, Internat. J. Heat Mass Transfer, 85 (2015), 787–796 | DOI
[12] S. Gong, P. Cheng, “Lattice Boltzmann simulation of periodic bubble nucleation, growth and departure from a heated surface in pool boiling”, Internat. J. Heat Mass Transfer, 64 (2013), 122–132 | DOI
[13] A. V. Fedoseev, A. S. Surtaev, M. I. Moiseev, A. E. Ostapchenko, “Lattice Boltzmann simulation of bubble evolution at boiling on surfaces with different wettability”, J. Phys. Conf. Series, 1677 (2020), 012085 | DOI
[14] Q. Li, Y. Yu, P. Zhou, H. J. Yan, “Enhancement of boiling heat transfer using hydrophilic-hydrophobic mixed surfaces: A lattice Boltzmann study”, Appl. Thermal Engrg., 132 (2018), 490–499 | DOI
[15] D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models, Springer-Verl, N.Y., 2005 | MR
[16] X. He, L. S. Luo, “Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation”, Phys. Rev. E, 56:6 (1997), 6811 | DOI | MR
[17] X. Shan, X. F. Yuan, H. Chen, “Kinetic theory representation of hydrodynamics: a way beyond the Navier-Stokes equation”, J. Fluid Mech., 550 (2006), 413 | DOI | MR | Zbl
[18] Y. H. Qian, D. d'Humieres, P. Lallemand, “Lattice BGK models for Navier-Stokes equation”, Europhys. Lett., 17:6 (1992), 479 | DOI | Zbl
[19] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Univ. Press, Oxford, 2001 | MR
[20] P. L. Bhatnagar, E. P. Gross, M. Krook, “A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems”, Phys. Rev., 94 (1954), 511–525 | DOI | Zbl
[21] H. Chen, S. Chen, W. H. Matthaeus, “Recovery of the Navier-Stokes equation using a lattice-gas Boltzmann method”, Phys. Rev. A, 45 (1992), R5339–R5342 | DOI
[22] A. L. Kupershtokh, “Modelirovanie techenii s granitsami razdela faz zhidkost-par metodom reshetochnykh uravnenii Boltsmana”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 29–42 | Zbl
[23] A. L. Kupershtokh, “Modelirovanie dvukhfaznykh techenii zhidkost-par metodom reshetochnykh uravnenii Boltsmana”, Sb. trudov Vserossiiskoi konf. «28 Sibirskii teplofizicheskii seminar» (Novosibirsk, 2005), 1–22
[24] A. L. Kupershtokh, C. Stamatelatos, D. P. Agoris, “Stochastic model of partial discharge activity in liquid and solid dielectrics”, Proc. 15 IEEE Internat. Conf. Dielectric Liquids (Coimbra, 2005), 135–138
[25] A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos, V. P. Charalambakos, E. C. Pyrgioti, D. P. Agoris, “Stochastic models of partial discharge activity in solid and liquid dielectrics”, IET Sci. Meas. Technol., 1:6 (2007), 303–311 | DOI
[26] A. L. Kupershtokh, D. I. Karpov, D. A. Medvedev, C. P. Stamatelatos, V. P. Charalambakos, E. C. Pyrgioti, D. P. Agoris, “Stochastic models of partial discharge activity in solid and liquid dielectrics”, IET Sci. Meas. Technol., 1:6 (2007), 303–311 | DOI
[27] P. Yuan, L. Schaefer, “Equations of state in a lattice Boltzmann model”, Phys. Fluids, 18 (2006), 042101 | DOI | MR | Zbl
[28] D. Y. Peng, Robinson, D. B., “A New two-constant equation of state”, Indust. Engrg. Chemistry. Fundamentals, 15 (1976), 59–64 | DOI | MR | Zbl
[29] S. Blundell, K. M. Blundell, Concepts in Thermal Physics, Univ. Press, Oxford, 2006 | Zbl