Numerical simulations of a swirling flow in a francis draft tube
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 132-141.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the flow in a model Francis-99 draft tube for partial load conditions using Large-eddy simulations. The swirl is produced by the runner rotating with a constant angular velocity. Within the validation step we compare results of eddy-resolving simulations with our Particle image velocimetry (PIV) and pressure measurements for three flow cases with different incoming flow rates. The time-averaged velocity fields agree well in experiments and simulations. To study the dynamical features we analyze spectral characteristics of the flow featuring a strong coherent component. This vortical structure corresponds to the precessing vortex core (PVC) changing the shape and amplitude with the increase in the bulk velocity.
Keywords: hydroturbine, draft tube, swirling flows, hydrodynamics instability, self-oscillation, precessing vortex core, large-eddy simulation.
Mots-clés : turbulence, simulation
@article{SJIM_2023_26_1_a11,
     author = {E. V. Palkin and M. Yu. Hrebtov and R. I. Mullyadzhanov and I. V. Litvinov and S. V. Alexeenko},
     title = {Numerical simulations of a swirling flow in a francis draft tube},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {132--141},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a11/}
}
TY  - JOUR
AU  - E. V. Palkin
AU  - M. Yu. Hrebtov
AU  - R. I. Mullyadzhanov
AU  - I. V. Litvinov
AU  - S. V. Alexeenko
TI  - Numerical simulations of a swirling flow in a francis draft tube
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 132
EP  - 141
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a11/
LA  - ru
ID  - SJIM_2023_26_1_a11
ER  - 
%0 Journal Article
%A E. V. Palkin
%A M. Yu. Hrebtov
%A R. I. Mullyadzhanov
%A I. V. Litvinov
%A S. V. Alexeenko
%T Numerical simulations of a swirling flow in a francis draft tube
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 132-141
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a11/
%G ru
%F SJIM_2023_26_1_a11
E. V. Palkin; M. Yu. Hrebtov; R. I. Mullyadzhanov; I. V. Litvinov; S. V. Alexeenko. Numerical simulations of a swirling flow in a francis draft tube. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 132-141. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a11/

[1] F. Gallaire, M. Ruith, E. Meiburg, J. M. Chomaz, P. Huerre, “Spiral vortex breakdown as a global mode”, J. Fluid Mech., 549 (2006), 71–80 | DOI | MR

[2] N. Syred, “A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems”, Prog. Energy Combust. Sci., 32 (2006), 93–161 | DOI

[3] P. Dörfler, M. Sick, A. Coutu, Flow-Induced Pulsation and Vibration in Hydroelectric Machinery: Engineer's Guidebook for Planning, Design and Troubleshooting, Springer-Verl., London, 2013

[4] M. Nishi, T. Kubota, S. Matsunaga, Y. Senoo, “Study on swirl flow and surge in an elbow type draft tube”, Proc. IAHR 10th Symp., v. 1, 1980, 557–568

[5] S. Pasche, F. Avellan, F. Gallaire, “Part load vortex rope as a global unstable mode”, J. Fluids Engrg, 139:5 (2017) | DOI

[6] R. Goyal, B. K. Gandhi, M. J. Cervantes, “PIV measurements in francis turbine-a review and application to transient operations”, Renew. Sust. Energ. Rev., 81 (2018), 2976–2991 | DOI

[7] G. Tiwari, J. Kumar, V. Prasad, V. K. Patel, “Utility of CFD in the design and performance analysis of hydraulic turbines A review”, Energy Rep., 6 (2020), 2410–2429 | DOI

[8] O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion”, Philos. Trans. Royal Soc. A, 186 (1895), 123–64 | MR

[9] J. H. Ferziger, M. Peric, R. L. Street, Computational Methods for Fluid Dynamics, Springer-Verl., Berlin, 2002 | MR | Zbl

[10] I. Litvinov, S. Shtork, E. Gorelikov, A. Mitryakov, K. Hanjalić, “Unsteady regimes and pressure pulsations in draft tube of a model hydro turbine in a range of off-design conditions”, Exp. Therm. Fluid Sci., 91 (2018), 410–422 | DOI

[11] I. Litvinov, D. Sharaborin, E. Gorelikov, V. Dulin, S. Shtork, S. Alekseenko, K. Oberleithner, “Modal decomposition of precessing vortex core in a model hydro turbine”, Appl. Sci., 12:10 (2022), 5127 | DOI

[12] V. Sonin, A. Ustimenko, P. Kuibin, I. Litvinov, S. Shtork, “Study of the velocity distribution influence upon the pressure pulsations in draft tube model of hydro-turbine”, IOP Conf. Ser. Earth Environ. Sci., 49 (2016), 82020 | DOI

[13] OpenFOAM (Programmnyi paket CFD s otkrytym iskhodnym kodom i shirokim naborom funktsii dlya resheniya mnozhestva zadach, ot slozhnykh potokov zhidkosti, vklyuchayuschikh khimicheskie reaktsii, turbulentnost i teploperedachu, do akustiki, mekhaniki tverdogo tela i elektromagnetizma), , 2004 http://www.openfoam.com

[14] M. Germano, U. Piomelli, P. Moin, W. Cabot, “A dynamic subgrid-scale eddy viscosity model”, Phys. Fluids. A. Fluid Dynamics, 3:7 (1991), 1760–1765 | DOI | Zbl

[15] D. K. Lilly, “A proposed modification of the Germano subgrid-scale closure method”, Phys. Fluids. A. Fluid Dynamics, 4:3 (1992), 633–635 | DOI | MR

[16] J. Smagorinsky, “General circulation experiments with the primitive equations: I. The basic experiment”, Mon. Weather. Rev., 91:3 (1963), 99–164 | 2.3.CO;2 class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI

[17] J. Crank, P. Nicolson, “A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type”, Proc. Math. Cambbridge Philos. Soc., 43:1 (1947), 50–67 | DOI | MR | Zbl

[18] B. Van Leer, “Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method”, J. Comput. Phys., 32:1 (1979), 101–36 | DOI

[19] R. I. Issa, “Solution of the implicitly discretised fluid flow equations by operator-splitting”, J. Comput. Phys., 62:1 (1986), 40–65 | DOI | MR | Zbl

[20] Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion, Elsevier, 1983

[21] T. Holzmann, Mathematics, Numerics, Derivations, OpenFOAM(R), Holzmann CFD, Loeben, 2019

[22] M. Cervantes, C. H. Trivedi, O. G. Dahlhaug, T. Nielsen, “Francis-99 workshop 1: steady operation of Francis turbines”, J. Phys. Conf. Ser., 579 (2015), 011001 | DOI

[23] A. V. Minakov, D. V. Platonov, I. V. Litvinov, S. I. Shtork, K. Hanjali?c, “Vortex ropes in draft tube of a laboratory Kaplan hydroturbine at low load: an experimental and les scrutiny of rans and des computational models”, J. Hydraul. Res, 55:5 (2017), 668–685 | DOI

[24] M. Yu. Hrebtov, E. V. Palkin, R. I. Mullyadzhanov, “Large-eddy simulation of a swirling flow in a model combustion chamber”, J. Phys. Conf. Ser., 1677:1 (2020), 012012 | DOI

[25] P. E. Farrell, J. R. Maddison, “Conservative interpolation between volume meshes by local Galerkin projection”, Comput. Meth. Appl. Mech. Engrg., 200:1-4 (2011), 89–100 | DOI | MR