Mathematical modeling of heat transfer in a room with a gas infrared heater, air exchange system and local fence of the working area
Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Mathematical modeling of heat transfer processes in a room with a gas infrared heater, an air exchange system, a horizontal panel simulating equipment, and a local fence has been conducted. The system of equations of radiative heat transfer, energy and Navier—Stokes for air and thermal conductivity for solid elements were solved. The fields of temperatures and air velocities obtained as a result of modeling illustrate the possibility of controlling the thermal regime of a local working area when a special fence is installed at its border. It was found that by changing the height and the material of the fence, it is possible to change the local and average air temperatures of the local working area. The results give grounds for the conclusion that by varying the parameters of local fences, it is possible to create more comfortable temperature conditions in the local working area when gas infrared heaters operate under conditions of intense air exchange.
Keywords: mathematical modeling, thermal regime, gas infrared heater, heat supply object, convective heat transfer. .
@article{SJIM_2023_26_1_a1,
     author = {B. V. Borisov and A. V. Vyatkin and G. V. Kuznetsov and V. I. Maksimov and T. A. Nagornova},
     title = {Mathematical modeling of heat transfer in a room with a gas infrared heater, air exchange system and local fence of the working area},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {20--32},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a1/}
}
TY  - JOUR
AU  - B. V. Borisov
AU  - A. V. Vyatkin
AU  - G. V. Kuznetsov
AU  - V. I. Maksimov
AU  - T. A. Nagornova
TI  - Mathematical modeling of heat transfer in a room with a gas infrared heater, air exchange system and local fence of the working area
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2023
SP  - 20
EP  - 32
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a1/
LA  - ru
ID  - SJIM_2023_26_1_a1
ER  - 
%0 Journal Article
%A B. V. Borisov
%A A. V. Vyatkin
%A G. V. Kuznetsov
%A V. I. Maksimov
%A T. A. Nagornova
%T Mathematical modeling of heat transfer in a room with a gas infrared heater, air exchange system and local fence of the working area
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2023
%P 20-32
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a1/
%G ru
%F SJIM_2023_26_1_a1
B. V. Borisov; A. V. Vyatkin; G. V. Kuznetsov; V. I. Maksimov; T. A. Nagornova. Mathematical modeling of heat transfer in a room with a gas infrared heater, air exchange system and local fence of the working area. Sibirskij žurnal industrialʹnoj matematiki, Tome 26 (2023) no. 1, pp. 20-32. http://geodesic.mathdoc.fr/item/SJIM_2023_26_1_a1/

[1] C. Zhang, M. Pomianowski, P. K. Heiselberg, T. Yu, “A review of integrated radiant heating/cooling with ventilation systems: Thermal comfort and indoor air quality”, Energy and Buildings, 223 (2020), 110094 | DOI

[2] C. Karmann, S. Schiavon, F. Bauman, “Thermal comfort in buildings using radiant vs. all-air systems: A critical literature review”, Building and Environment, 111 (2017), 123–31 | DOI

[3] W. Song, Z. Zhang, Z. Chen, F. Wang, B. Yang, “Thermal comfort and energy performance of personal comfort systems (PCS): A systematic review and meta-analysis”, Energy and Buildings, 256 (2022), 111747 | DOI

[4] H. Wang, W. Li, J. Wang, M. Xu, B. Ge, “Experimental study on local floor heating mats to improve thermal comfort of workers in cold environments”, Building and Environment, 205 (2021), 108227 | DOI

[5] J. Verhaart, M. Vesely, W. Zeiler, “Personal heating: effectiveness and energy use”, Building Research and Information, 43:3 (2015), 346–354 | DOI

[6] J. Tan, J. Liu, W. Liu, B. Yu, J. Zhang, “Performance on heating human body of an optimised radiant convective combined personal electric heater”, Building and Environment, 214 (2022), 108882 | DOI

[7] C. Du, H. Liu, C. Li, J. Xiong, B. Li, G. Li, Z. Xi, “Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments”, Building and Environment, 171 (2020), 106662 | DOI

[8] J. Oravec, O. Sikula, M. Krajcik, M. Arici, M. Mohapl, “A comparative study on the applicability of six radiant floor, wall, and ceiling heating systems based on thermal performance analysis”, J. Building Engrg., 36 (2021), 102133 | DOI

[9] A. Maznoy, A. Kirdyashkin, N. Pichugin, S. Zambalov, D. Petrov, “Development of a new infrared heater based on an annular cylindrical radiant burner for direct heating applications”, Energy, 204 (2020), 117965 | DOI

[10] A. Kavga, E. Karanastasi, I. Konstas, Th. Panidis, “Performance of an infrared heating system in a production greenhouse”, IFAC Proc., 46:18 (2013), 235–240 | DOI

[11] E. Dudkiewicz, P. Szalanski, “Overview of exhaust gas heat recovery technologies for radiant heating systems in large halls”, Thermal Sci. Engrg. Progress, 18 (2020), 100522 | DOI

[12] G. V. Kuznetsov, N. I. Kurilenko, V. I. Maksimov, T. A. Nagornova, “Experimental and numerical study of heat transfer in production area heated by gas infrared source”, Internat. J. Thermal Sci., 154 (2020), 106396 | DOI

[13] G. V. Kuznetsov, V. I. Maksimov, T. A. Nagornova, I. V. Voloshko, N. Y. Gutareva, N. I. Kurilenko, “Experimental determination of the worker's clothing surface temperature during the ceramic gas heater operation”, Thermal Sci. Engrg. Progress, 22 (2021), 100851 | DOI

[14] B. V. Borisov, G. V. Kuznetsov, V. I. Maksimov, T. A. Nagornova, N. Y. Gutareva, “Numerical simulation of heat transfer in a large room with a working gas infrared emitter”, J. Phys. Conf. Ser, 1675 (2020), 012074 | DOI

[15] B. Bird, W. E. Stewart, E. N. Lightfoot, Transport Phenomena, J. Wiley Sons, 2007

[16] D. J. Tritton, Physical Fluid Dynamics, Clarendon Press, 1988 | MR

[17] D. C. Wilcox, Turbulence Modeling for CFD, DCW Ind, 1998

[18] D. Kuzmin, O. Mierka, S. Turek, “On the implementation of the $k-\varepsilon$ turbulence model in incompressible flow solvers based on a finite element discretization”, Internat. J. Comput. Sci. Math., 1:2-4 (2007), 193–206 https://www.researchgate.net/publication/228529803 | DOI | Zbl

[19] R. Siegel, J. Howell, Thermal Radiation Heat Transfer, Taylor Francis, N.Y., 2002

[20] W. M. Haynes, Handbook of Chemistry and Physics 2015–2016, Taylor Francis, Boca Raton, 2015