Mots-clés : equation Liouville. .
@article{SJIM_2022_25_4_a7,
author = {M. V. Neshchadim},
title = {The {Liouville} equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {99--106},
year = {2022},
volume = {25},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/}
}
TY - JOUR
AU - M. V. Neshchadim
TI - The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$
JO - Sibirskij žurnal industrialʹnoj matematiki
PY - 2022
SP - 99
EP - 106
VL - 25
IS - 4
UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/
LA - ru
ID - SJIM_2022_25_4_a7
ER -
M. V. Neshchadim. The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 99-106. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/
[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[2] G. G. Mikhailichenko, Gruppovaya simmetriya fizicheskikh struktur, izd. Barnaul. gos. ped. un-ta, Barnaul, 2003
[3] Yu. I. Kulakov, Teoriya fizicheskikh struktur, Alfa Vista, Novosibirsk, 2004
[4] A. A. Simonov, “Obobschenie tochno tranzitivnykh grupp”, Izv. RAN. Ser. mat., 78:6 (2014), 153–178 | MR
[5] V. A. Kyrov, “Analiticheskii metod vlozheniya mnogomernykh psevdoevklidovykh geometrii”, Sib. elektron. mat. izvestiya, 15 (2018), 741–758 | MR
[6] M. V. Neschadim, A. A. Simonov, “Ob algebraicheskikh sistemakh Kulakova na gruppakh”, Sib. mat. zhurn., 62:6 (2021), 1357–1368
[7] V. V. Gorbatsevich, A. L. Onischik, “Gruppy Li preobrazovanii”, Gruppy Li i algebry Li – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 20, VINITI, M., 1988, 103–240 | MR
[8] A. L. Onischik, Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995
[9] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR
[10] S. Lie, “Diskussion der differentiagleichung $\frac{d^2z}{dx\,dy}=F(z)$”, Arch. Math., 6:1 (1881), 112–124
[11] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya Kleina Gordona s netrivialnoi gruppoi”, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR
[12] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29 | MR
[13] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, Uspekhi mat. nauk, 42:4 (1987), 3–53 | MR
[14] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Uspekhi mat. nauk, 56:1 (2001), 63–106 | MR