The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 99-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that exactly transitive representations of the algebra $sl_2(\mathbb{R})$ in the space of vector fields $\mathrm{Vect}\, \mathbb{R}^{3}$ are classified by solutions of the equation Liouville. We also obtain a characterization of exactly transitive representations of the algebra $so_3(\mathbb{R})$.
Keywords: algebras $sl_2(\mathbb{R})$, $so_3(\mathbb{R})$, exactly transitive representations
Mots-clés : equation Liouville. .
@article{SJIM_2022_25_4_a7,
     author = {M. V. Neshchadim},
     title = {The {Liouville} equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {99--106},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/}
}
TY  - JOUR
AU  - M. V. Neshchadim
TI  - The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 99
EP  - 106
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/
LA  - ru
ID  - SJIM_2022_25_4_a7
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%T The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 99-106
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/
%G ru
%F SJIM_2022_25_4_a7
M. V. Neshchadim. The Liouville equation and exactly transitive representations of algebra $sl_2(\mathbb{R})$. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 99-106. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a7/

[1] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[2] G. G. Mikhailichenko, Gruppovaya simmetriya fizicheskikh struktur, izd. Barnaul. gos. ped. un-ta, Barnaul, 2003

[3] Yu. I. Kulakov, Teoriya fizicheskikh struktur, Alfa Vista, Novosibirsk, 2004

[4] A. A. Simonov, “Obobschenie tochno tranzitivnykh grupp”, Izv. RAN. Ser. mat., 78:6 (2014), 153–178 | MR

[5] V. A. Kyrov, “Analiticheskii metod vlozheniya mnogomernykh psevdoevklidovykh geometrii”, Sib. elektron. mat. izvestiya, 15 (2018), 741–758 | MR

[6] M. V. Neschadim, A. A. Simonov, “Ob algebraicheskikh sistemakh Kulakova na gruppakh”, Sib. mat. zhurn., 62:6 (2021), 1357–1368

[7] V. V. Gorbatsevich, A. L. Onischik, “Gruppy Li preobrazovanii”, Gruppy Li i algebry Li – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 20, VINITI, M., 1988, 103–240 | MR

[8] A. L. Onischik, Topologiya tranzitivnykh grupp preobrazovanii, Fizmatlit, M., 1995

[9] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[10] S. Lie, “Diskussion der differentiagleichung $\frac{d^2z}{dx\,dy}=F(z)$”, Arch. Math., 6:1 (1881), 112–124

[11] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya Kleina Gordona s netrivialnoi gruppoi”, Dokl. AN SSSR, 247:5 (1979), 1103–1107 | MR

[12] A. V. Zhiber, N. Kh. Ibragimov, A. B. Shabat, “Uravneniya tipa Liuvillya”, Dokl. AN SSSR, 249:1 (1979), 26–29 | MR

[13] A. V. Mikhailov, A. B. Shabat, R. I. Yamilov, “Simmetriinyi podkhod k klassifikatsii nelineinykh uravnenii. Polnye spiski integriruemykh sistem”, Uspekhi mat. nauk, 42:4 (1987), 3–53 | MR

[14] A. V. Zhiber, V. V. Sokolov, “Tochno integriruemye giperbolicheskie uravneniya liuvillevskogo tipa”, Uspekhi mat. nauk, 56:1 (2001), 63–106 | MR