Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_4_a14, author = {M. A. Skvortsova and T. Yskak}, title = {Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {193--205}, publisher = {mathdoc}, volume = {25}, number = {4}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/} }
TY - JOUR AU - M. A. Skvortsova AU - T. Yskak TI - Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 193 EP - 205 VL - 25 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/ LA - ru ID - SJIM_2022_25_4_a14 ER -
%0 Journal Article %A M. A. Skvortsova %A T. Yskak %T Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 193-205 %V 25 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/ %G ru %F SJIM_2022_25_4_a14
M. A. Skvortsova; T. Yskak. Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 193-205. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/
[1] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74, Kluwer Acad. Publ, Dordrecht, 1992 | MR
[2] Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Acad. Press, Boston, 1993 | MR
[3] H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, AMS, Providence, 1995 | MR
[4] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer-Verl, N.Y., 2009 | MR
[5] N. MacDonald, “Time delays in chemostat models”, Microbial Population Dynamics, CRC Press, Florida, 1982, 33–53 | MR
[6] G. S. K. Wolkowicz, H. Xia, “Global asymptotic behavior of a chemostat model with discrete delays”, SIAM J. Appl. Math., 57:4 (1997), 1019–1043 | DOI | MR
[7] G. S. K. Wolkowicz, H. Xia, J. Wu, “Global dynamics of a chemostat competition model with distributed delay”, J. Math. Biol., 38 (1999), 285–316 | DOI | MR
[8] G. V. Demidenko, I. I. Matveeva, “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 20–28
[9] D. Ya. Khusainov, A. F. Ivanov, A. T. Kozhametov, “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Differents. uravneniya, 41:8 (2005), 1137–1140 | MR
[10] S. Mondié, V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR
[11] G. V. Demidenko, I. I. Matveeva, “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR
[12] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl, 7:3 (2009), 119–130 | MR
[13] G. V. Demidenko, I. I. Matveeva, “Ob otsenkakh reshenii sistem differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 55:5 (2014), 1059–1077 | MR
[14] G. V. Demidenko, I. I. Matveeva, “Estimates for solutions to a class of nonlinear time-delay systems of neutral type”, Electron. J. Differ. Equ, 2015:34 (2015), 1–14 | MR
[15] G. V. Demidenko, I. I. Matveeva, “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qualitative Theory Differ. Equ, 2015:83 (2015), 1–22 | DOI | MR
[16] I. I. Matveeva, “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa”, Sib. mat. zhurn., 58:2 (2017), 344–352 | MR
[17] I. I. Matveeva, “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa s neskolkimi zapazdyvaniyami”, Differents. uravneniya, 53:6 (2017), 730–740
[18] G. V. Demidenko, I. I. Matveeva, M. A. Skvortsova, “Otsenki reshenii differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 60:5 (2019), 1063–1079 | MR
[19] I. I. Matveeva, “Otsenki eksponentsialnogo ubyvaniya reshenii odnogo klassa nelineinykh sistem neitralnogo tipa s periodicheskimi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 60:4 (2020), 612–620
[20] I. I. Matveeva, “Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients”, Electron. J. Differ. Equ, 2020:20 (2020), 1–12 | MR
[21] T. K. Yskak, “Stability of solutions to systems of differential equations with distributed delay”, Func. Differ. Equ, 25:1-2 (2018), 97–108 | MR
[22] T. Yskak, “Otsenki reshenii odnogo klassa sistem uravnenii neitralnogo tipa s raspredelennym zapazdyvaniem”, Sib. elektron. mat. izv, 17 (2020), 416–427 | MR
[23] T. Yskak, “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Sib. elektron. mat. izv, 17 (2020), 2204–2215 | MR
[24] T. Yskak, “Ob otsenkakh reshenii sistem nelineinykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem s periodicheskimi koeffitsientami v lineinoi chasti”, Sib. zhurn. industr. matematiki, 24:2 (2021), 148–159 | MR
[25] M. A. Skvortsova, “Ustoichivost reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Mat. zametki SVFU, 23:2 (2016), 108–120 | MR
[26] M. A. Skvortsova, “Otsenki reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Izv. Irkutsk. gos. un-ta. Ser. Matematika, 25 (2018), 109–125 | MR
[27] M. A. Skvortsova, “Ob otsenkakh reshenii v modeli khischnik-zhertva s dvumya zapazdyvaniyami”, Sib. elektron. mat. izv, 15 (2018), 1697–1718
[28] M. A. Skvortsova, “Asimptoticheskie svoistva reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Mat. zametki SVFU, 26:4 (2019), 63–72
[29] M. A. Skvortsova, “Asimptoticheskie svoistva reshenii v modeli khischnik-zhertva s dvumya zapazdyvaniyami”, Dinamicheskie sistemy, 9(37):4 (2019), 367–389
[30] M. A. Skvortsova, “Otsenki reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 188, 2020, 84–105
[31] M. A. Skvortsova, T. Yskak, “Asimptoticheskoe povedenie reshenii v odnoi modeli khischnik-zhertva s zapazdyvaniem”, Sib. mat. zhurn., 62:2 (2021), 402–416