Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 193-205.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a model of competition of n species in a chemostat. This model is a system of $n+1$ differential equations with infinite distributed delay. One equation is responsible for the change in nutrient concentration, and the other n are responsible for the change in the number of species. The transformation of a nutrient into viable cells does not occur instantly, and requires some time, which is taken into account by the presence of a delay. Under the condition when the concentration of the introduced nutrient is below a certain level, we have constructed Lyapunov–Krasovskii functionals, with the help of which we obtain estimates for all components of solutions. The estimates characterize the extinction rates of all species in the chemostat and the stabilization rate of the nutrient concentration to a constant value.
Keywords: species competition model, chemostat, delay differential equations, infinite distributed delay, estimates of solutions, Lyapunov–Krasovskii functionals. .
@article{SJIM_2022_25_4_a14,
     author = {M. A. Skvortsova and T. Yskak},
     title = {Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {193--205},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/}
}
TY  - JOUR
AU  - M. A. Skvortsova
AU  - T. Yskak
TI  - Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 193
EP  - 205
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/
LA  - ru
ID  - SJIM_2022_25_4_a14
ER  - 
%0 Journal Article
%A M. A. Skvortsova
%A T. Yskak
%T Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 193-205
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/
%G ru
%F SJIM_2022_25_4_a14
M. A. Skvortsova; T. Yskak. Estimates of solutions to differential equations with distributed delay describing the competition of several types of microorganisms. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 193-205. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a14/

[1] K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Mathematics and its Applications, 74, Kluwer Acad. Publ, Dordrecht, 1992 | MR

[2] Y. Kuang, Delay Differential Equations: with Applications in Population Dynamics, Mathematics in Science and Engineering, 191, Acad. Press, Boston, 1993 | MR

[3] H. L. Smith, Monotone Dynamical Systems: an Introduction to the Theory of Competitive and Cooperative Systems, Mathematical Surveys and Monographs, 41, AMS, Providence, 1995 | MR

[4] T. Erneux, Applied Delay Differential Equations, Surveys and Tutorials in the Applied Mathematical Sciences, 3, Springer-Verl, N.Y., 2009 | MR

[5] N. MacDonald, “Time delays in chemostat models”, Microbial Population Dynamics, CRC Press, Florida, 1982, 33–53 | MR

[6] G. S. K. Wolkowicz, H. Xia, “Global asymptotic behavior of a chemostat model with discrete delays”, SIAM J. Appl. Math., 57:4 (1997), 1019–1043 | DOI | MR

[7] G. S. K. Wolkowicz, H. Xia, J. Wu, “Global dynamics of a chemostat competition model with distributed delay”, J. Math. Biol., 38 (1999), 285–316 | DOI | MR

[8] G. V. Demidenko, I. I. Matveeva, “Asimptoticheskie svoistva reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 5:3 (2005), 20–28

[9] D. Ya. Khusainov, A. F. Ivanov, A. T. Kozhametov, “Otsenki skhodimosti reshenii lineinykh statsionarnykh sistem differentsialno-raznostnykh uravnenii s postoyannym zapazdyvaniem”, Differents. uravneniya, 41:8 (2005), 1137–1140 | MR

[10] S. Mondié, V. L. Kharitonov, “Exponential estimates for retarded time-delay systems: LMI approach”, IEEE Trans. Automat. Control, 50:2 (2005), 268–273 | DOI | MR

[11] G. V. Demidenko, I. I. Matveeva, “Ustoichivost reshenii differentsialnykh uravnenii s zapazdyvayuschim argumentom i periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 48:5 (2007), 1025–1040 | MR

[12] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl, 7:3 (2009), 119–130 | MR

[13] G. V. Demidenko, I. I. Matveeva, “Ob otsenkakh reshenii sistem differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami”, Sib. mat. zhurn., 55:5 (2014), 1059–1077 | MR

[14] G. V. Demidenko, I. I. Matveeva, “Estimates for solutions to a class of nonlinear time-delay systems of neutral type”, Electron. J. Differ. Equ, 2015:34 (2015), 1–14 | MR

[15] G. V. Demidenko, I. I. Matveeva, “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qualitative Theory Differ. Equ, 2015:83 (2015), 1–22 | DOI | MR

[16] I. I. Matveeva, “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa”, Sib. mat. zhurn., 58:2 (2017), 344–352 | MR

[17] I. I. Matveeva, “Ob eksponentsialnoi ustoichivosti reshenii periodicheskikh sistem neitralnogo tipa s neskolkimi zapazdyvaniyami”, Differents. uravneniya, 53:6 (2017), 730–740

[18] G. V. Demidenko, I. I. Matveeva, M. A. Skvortsova, “Otsenki reshenii differentsialnykh uravnenii neitralnogo tipa s periodicheskimi koeffitsientami v lineinykh chlenakh”, Sib. mat. zhurn., 60:5 (2019), 1063–1079 | MR

[19] I. I. Matveeva, “Otsenki eksponentsialnogo ubyvaniya reshenii odnogo klassa nelineinykh sistem neitralnogo tipa s periodicheskimi koeffitsientami”, Zhurn. vychisl. matematiki i mat. fiziki, 60:4 (2020), 612–620

[20] I. I. Matveeva, “Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients”, Electron. J. Differ. Equ, 2020:20 (2020), 1–12 | MR

[21] T. K. Yskak, “Stability of solutions to systems of differential equations with distributed delay”, Func. Differ. Equ, 25:1-2 (2018), 97–108 | MR

[22] T. Yskak, “Otsenki reshenii odnogo klassa sistem uravnenii neitralnogo tipa s raspredelennym zapazdyvaniem”, Sib. elektron. mat. izv, 17 (2020), 416–427 | MR

[23] T. Yskak, “Otsenki reshenii odnogo klassa sistem nelineinykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem”, Sib. elektron. mat. izv, 17 (2020), 2204–2215 | MR

[24] T. Yskak, “Ob otsenkakh reshenii sistem nelineinykh differentsialnykh uravnenii s raspredelennym zapazdyvaniem s periodicheskimi koeffitsientami v lineinoi chasti”, Sib. zhurn. industr. matematiki, 24:2 (2021), 148–159 | MR

[25] M. A. Skvortsova, “Ustoichivost reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Mat. zametki SVFU, 23:2 (2016), 108–120 | MR

[26] M. A. Skvortsova, “Otsenki reshenii v modeli khischnik-zhertva s zapazdyvaniem”, Izv. Irkutsk. gos. un-ta. Ser. Matematika, 25 (2018), 109–125 | MR

[27] M. A. Skvortsova, “Ob otsenkakh reshenii v modeli khischnik-zhertva s dvumya zapazdyvaniyami”, Sib. elektron. mat. izv, 15 (2018), 1697–1718

[28] M. A. Skvortsova, “Asimptoticheskie svoistva reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Mat. zametki SVFU, 26:4 (2019), 63–72

[29] M. A. Skvortsova, “Asimptoticheskie svoistva reshenii v modeli khischnik-zhertva s dvumya zapazdyvaniyami”, Dinamicheskie sistemy, 9(37):4 (2019), 367–389

[30] M. A. Skvortsova, “Otsenki reshenii v modeli vzaimodeistviya populyatsii s neskolkimi zapazdyvaniyami”, Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory, 188, 2020, 84–105

[31] M. A. Skvortsova, T. Yskak, “Asimptoticheskoe povedenie reshenii v odnoi modeli khischnik-zhertva s zapazdyvaniem”, Sib. mat. zhurn., 62:2 (2021), 402–416