Numerical simulation of dynamics of T-lymphocytes population
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 136-152.

Voir la notice de l'article provenant de la source Math-Net.Ru

A mathematical model describing the dynamics of the population of CD4+ T-lymphocytes in a single lymph node is presented. The model is based on a delay high-dimensional system of nonlinear differential equations supplemented with initial data. The equations of the model are given and their correctness is investigated. The results of computational experiments with the model, illustrating the typical dynamics of cell populations under conditions of antigen-specific stimulation of the process of reproduction of cells of various types, are presented.
Mots-clés : CD4+ T-lymphocyte population, HIV-1 infection.
Keywords: homeostasis, lymph node, mathematical model, model correctness, computational experiment
@article{SJIM_2022_25_4_a10,
     author = {N. V. Pertsev and G. A. Bocharov and K. K. Loginov},
     title = {Numerical simulation of dynamics of {T-lymphocytes} population},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {136--152},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a10/}
}
TY  - JOUR
AU  - N. V. Pertsev
AU  - G. A. Bocharov
AU  - K. K. Loginov
TI  - Numerical simulation of dynamics of T-lymphocytes population
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 136
EP  - 152
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a10/
LA  - ru
ID  - SJIM_2022_25_4_a10
ER  - 
%0 Journal Article
%A N. V. Pertsev
%A G. A. Bocharov
%A K. K. Loginov
%T Numerical simulation of dynamics of T-lymphocytes population
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 136-152
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a10/
%G ru
%F SJIM_2022_25_4_a10
N. V. Pertsev; G. A. Bocharov; K. K. Loginov. Numerical simulation of dynamics of T-lymphocytes population. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 136-152. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a10/

[1] T. Luzyanina, S. Mrusek, J. T. Edwards, D. Roose, S. Ehl, G. Bocharov, “Computational analysis of CFSE proliferation assay”, J. Math. Biol., 54 (2007), 57–89 | DOI | MR

[2] T. Luzyanina, J. Cupovic, B. Ludewig, G. Bocharov, “Mathematical models for CFSE labelled lymphocyte dynamics: asymmetry and time-lag in division”, J. Math. Biol., 69 (2014), 1547–1583 | DOI | MR

[3] G. Bocharov, A. Meyerhans, N. Bessonov, S. Trofimchuk, V. Volpert, “Spatiotemporal Dynamics of virus infection spreading in tissues”, PLoS ONE, 11:12. Article e0168576 (2016) | DOI | MR

[4] G. I. Marchuk, Matematicheskie modeli v immunologii: vychislitelnye metody i eksperimenty, Nauka, M., 1991 | MR

[5] K. A. Pawelek, S. Liu, F. Pahlevani, F. L. Rong, “A model of HIV-1 infection with two time delays: mathematical analysis and comparison with patient data”, Math. Biosci, 235:1 (2012), 98–109 | DOI | MR

[6] S. Nakaoka, S. Iwami, K. Sato, “Dynamics of HIV infection in lymphoid tissue network”, J. Math. Biol., 72 (2016), 909–938 | DOI | MR

[7] N. Pertsev, K. Loginov, G. Bocharov, “Nonlinear effects in the dynamics of HIV-1 infection predicted by mathematical model with multiple delays”, Discrete Contin. Dynam. Syst. Ser., 13:9, 2365–2384, 2020 | DOI | MR

[8] N. V. Pertsev, “Globalnaya razreshimost i otsenki reshenii zadachi Koshi dlya funktsionalno-differentsialnykh uravnenii s zapazdyvaniem, ispolzuemykh v modelyakh zhivykh sistem”, Sib. mat. zhurn., 59:1 (2018), 143–157 | MR

[9] J. Cosgrove, L. S.P. Hustin, R. J. de Boer, L. Perie, “Hematopoiesis in numbers”, Trends Immunol, 42:12 (2021), 1100–1112 | DOI

[10] A. T. Haase, “Population biology of HIV-1 infection: viral and CD4+ T cell demographics and dynamics in lymphatic tissues”, Annu. Rev. Immunol, 17 (1999), 625–656 | DOI

[11] R. M. Tsinkernagel, Osnovy immunologii, Mir, M., 2008

[12] A. A. Yarilin, Immunologiya, GEOTAR-Media, M., 2010

[13] T. Hapuarachchi, J. Lewis, R. E. Callard, “A mechanistic model for naive CD4 T cell homeostasis in healthy adults and children”, Front Immunol., 4 (2013), 366 | DOI

[14] R. Sender, R. Milo, “The distribution of cellular turnover in the human body”, Nat. Med., 27:1 (2021), 45–48 | DOI

[15] N. Vrisekoop, J. Drylewicz, R. Van Gent, T. Mugwagwa, S. F. Van Lelyveld, E. Veel, S. A. Otto, M. T. Ackermans, J. N. Vermeulen, H. H. Huidekoper, J. M. Prins, F. Miedema, R. J. de Boer, K. Tesselaar, J. A. Borghans, “Quantification of naive and memory T-cell turnover during HIV-1 infection”, AIDS, 29:16 (2015), 2071–2080 | DOI

[16] M. C. Hunter, A. Teijeira, C. Halin, “T-cell trafficking through lymphatic vessels”, Front Immunol, 7 (2016), 613 | DOI