On invariant surfaces in phase portraits
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 5-13

Voir la notice de l'article provenant de la source Math-Net.Ru

For block-linear dynamical system of dimensions 3 and 4 considered as models of simplest circular gene networks, we find sufficient conditions of existence of invariant surfaces in their phase portraits. These surfaces contain periodic trajectories of the dynamical systems.
Keywords: block-linear dynamical systems, Poincaré map, fixed point, Grobman—Hartman theorem, Perron—Frobenius theorem. .
Mots-clés : invariant domains, invariant surfaces, cycles
@article{SJIM_2022_25_4_a0,
     author = {N. B. Ayupova and V. P. Golubyatnikov and L. S. Minushkina},
     title = {On invariant surfaces in phase portraits},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/}
}
TY  - JOUR
AU  - N. B. Ayupova
AU  - V. P. Golubyatnikov
AU  - L. S. Minushkina
TI  - On invariant surfaces in phase portraits
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 5
EP  - 13
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/
LA  - ru
ID  - SJIM_2022_25_4_a0
ER  - 
%0 Journal Article
%A N. B. Ayupova
%A V. P. Golubyatnikov
%A L. S. Minushkina
%T On invariant surfaces in phase portraits
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 5-13
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/
%G ru
%F SJIM_2022_25_4_a0
N. B. Ayupova; V. P. Golubyatnikov; L. S. Minushkina. On invariant surfaces in phase portraits. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 5-13. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/