On invariant surfaces in phase portraits
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

For block-linear dynamical system of dimensions 3 and 4 considered as models of simplest circular gene networks, we find sufficient conditions of existence of invariant surfaces in their phase portraits. These surfaces contain periodic trajectories of the dynamical systems.
Keywords: block-linear dynamical systems, Poincaré map, fixed point, Grobman—Hartman theorem, Perron—Frobenius theorem. .
Mots-clés : invariant domains, invariant surfaces, cycles
@article{SJIM_2022_25_4_a0,
     author = {N. B. Ayupova and V. P. Golubyatnikov and L. S. Minushkina},
     title = {On invariant surfaces in phase portraits},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {25},
     number = {4},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/}
}
TY  - JOUR
AU  - N. B. Ayupova
AU  - V. P. Golubyatnikov
AU  - L. S. Minushkina
TI  - On invariant surfaces in phase portraits
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 5
EP  - 13
VL  - 25
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/
LA  - ru
ID  - SJIM_2022_25_4_a0
ER  - 
%0 Journal Article
%A N. B. Ayupova
%A V. P. Golubyatnikov
%A L. S. Minushkina
%T On invariant surfaces in phase portraits
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 5-13
%V 25
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/
%G ru
%F SJIM_2022_25_4_a0
N. B. Ayupova; V. P. Golubyatnikov; L. S. Minushkina. On invariant surfaces in phase portraits. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 4, pp. 5-13. http://geodesic.mathdoc.fr/item/SJIM_2022_25_4_a0/

[1] L. Glass, J. S. Pasternack, “Stable oscillations in mathematical models of biological control systems”, J. Math. Biology, 6 (1978), 207–223 | DOI | MR

[2] Sistemnaya kompyuternaya biologiya, Izd-vo SO RAN, Novosibirsk, 2008

[3] V. A. Likhoshvai, V. P. Golubyatnikov, T. M. Khlebodarova, “Limit cycles in models of circular gene networks regulated by negative feedback loops”, BMC Bioinformatics, 21:11 (2020), 255 | DOI

[4] V. P. Golubyatnikov, V. V. Ivanov, L. S. Minushkina, “O suschestvovanii tsikla v odnoi nesimmetrichnoi modeli koltsevoi gennoi seti”, Sib. zhurn. chistoi i prikl. matematiki, 18:3 (2018), 26–32 | DOI | MR

[5] V. P. Golubyatnikov, V. V. Ivanov, “Edinstvennost i ustoichivost tsikla v trekhmernykh blochnolineinykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. chistoi i prikl. matematiki, 18:4 (2018), 19–28 | DOI

[6] E. P. Volokitin, “O predelnykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. zhurn. industr. matematiki, 7:3 (2004), 57–65 | MR

[7] N. B. Ayupova, V. P. Golubyatnikov, “O edinstvennosti tsikla v nesimmetrichnoi trekhmernoi modeli molekulyarnogo repressilyatora”, Sib. zhurn. industr. matematiki, 17:1 (2014), 3–7

[8] V. P. Golubyatnikov, L. S. Minushkina, “Monotonnost otobrazheniya Puankare v nekotorykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. industr. matematiki, 22:3 (2019), 39–47 | DOI

[9] S. Hastings, J. Tyson, D. Webster, “Existence of periodic solutions for negative feedback cellular control systems”, J. Differ. Equ, 25 (1977), 39–64 | DOI | MR

[10] V. P. Golubyatnikov, L. S. Minushkina, “On uniqueness and stability of a cycle in one gene network”, Siber. Electron. Math. Rep., 18:1 (2021), 464–473 | DOI | MR

[11] N. B. Ayupova, V. P. Golubyatnikov, “Ob odnom tsikle v pyatimernoi modeli koltsevoi gennoi seti”, Sib. zhurn. industr. matematiki, 24:3 (2021), 19–29 | DOI

[12] N. E. Kirillova, “Ob invariantnykh poverkhnostyakh v modelyakh gennykh setei”, Sib. zhurn. industr. matematiki, 23:4 (2020), 69–76 | DOI

[13] V. V. Ivanov, “Prityagivayuschii predelnyi tsikl nechetnomernoi koltsevoi gennoi seti”, Sib. zhurn. industr. matematiki, 25:3 (2022), 25–32 | DOI

[14] V. P. Golubyatnikov, V. V. Ivanov, “Tsikly v nechetnomernykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. industr. matematiki, 21:4 (2018), 28–38 | DOI

[15] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970

[16] D. M. Grobman, “Topologicheskaya klassifikatsiya okrestnostei osoboi tochki v n-mernom prostranstve”, Mat. sb., 56:1 (1962), 77–94 | MR

[17] R. M. Mints, “Issledovanie nekotorykh osnovnykh tipov slozhnykh sostoyanii ravnovesiya v trekhmernom prostranstve”, Mat. sb., 63:2 (1964), 169–214

[18] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1967 | MR

[19] M. Hirsch, “Monotone dynamical systems with polyhedral order cones and dense periodic points”, AIMS Mathematics, 2:1 (2017), 24–27 | DOI | MR