On a boundary value problem for a third-order equation of parabolic-hyperbolic type
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 93-103.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider one boundary value problem for a parabolic-hyperbolic type equation in a triangular domain with three lines of type change, when the characteristic of the first-order operator is parallel to the axis $y$. The theorem of existence and uniqueness of the solution of the formulated problem is proved.
Keywords: differential and integral equations, solution construction method, boundary value problem, parabolic-hyperbolic type equation, unique solvability. .
@article{SJIM_2022_25_3_a8,
     author = {M. Mamajonov and H. M. Shermatova},
     title = {On a boundary value problem for a third-order equation of parabolic-hyperbolic type},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {93--103},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a8/}
}
TY  - JOUR
AU  - M. Mamajonov
AU  - H. M. Shermatova
TI  - On a boundary value problem for a third-order equation of parabolic-hyperbolic type
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 93
EP  - 103
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a8/
LA  - ru
ID  - SJIM_2022_25_3_a8
ER  - 
%0 Journal Article
%A M. Mamajonov
%A H. M. Shermatova
%T On a boundary value problem for a third-order equation of parabolic-hyperbolic type
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 93-103
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a8/
%G ru
%F SJIM_2022_25_3_a8
M. Mamajonov; H. M. Shermatova. On a boundary value problem for a third-order equation of parabolic-hyperbolic type. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 93-103. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a8/

[1] F. Trikomi, O lineinykh uravneniyakh v chastnykh proizvodnykh vtorogo poryadka smeshannogo tipa, Gostekhizdat, M.–L., 1947

[2] S. Gellerstedt, Sur un probleme aux limites pour une equation lineaire aux derivees partielles du second ordre de type mixte, These pour le doctorat, Uppsala, 1935

[3] A. V. Bitsadze, Uravneniya smeshannogo tipa, Itogi nauki. Fiz. mat. nauki, M., 1959

[4] K. I. Babenko, K teorii uravnenii smeshannogo tipa, Dis. ... dokt. fiz.-mat. nauk, M., 1952

[5] I. L. Karol, “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo elliptiko-giperbolicheskogo tipa”, Dokl. AN SSSR, 88:2 (1953), 197–200

[6] F. I. Frankl, “O zadachakh Chaplygina dlya smeshannykh do- i sverkhzvukovykh techenii”, Izv. AN SSSR. Ser. mat., 9:2 (1945), 126–142

[7] M. M. Smirnov, Uravneniya smeshannogo tipa, Nauka, M., 1970

[8] M. S. Salakhitdinov, Uravneniya smeshanno-sostavnogo tipa, Fan, Tashkent, 1974

[9] I. M. Gelfand, “Nekotorye voprosy analiza i differentsialnykh uravanenii”, Uspekhi mat. nauk, 14:3(87) (1959), 3–19

[10] T. D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1979

[11] T. D. Dzhuraev, A. Sopuev, M. Mamazhanov, Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, Fan, Tashkent, 1986

[12] T. D. Dzhuraev, M. Mamazhanov, “Kraevye zadachi dlya odnogo klassa uravnenii chetvertogo poryadka smeshannogo tipa”, Differents. uravneniya, 22:1 (1986), 25–31

[13] Zh. O. Takhirov, Kraevye zadachi dlya smeshannogo parabolo-giperbolicheskogo uravneniya s izvestnoi i neizvestnoi liniyami razdela, Avtoref. dis. ... kand. fiz.-mat. nauk, Tashkent, 1988

[14] A. S. Berdyshev, Kraevye zadachi i ikh spektralnye svoistva dlya uravneniya smeshannogo parabolo-giperbolicheskogo i smeshanno-sostavnogo tipov, Almaty, 2015