Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a6, author = {E. V. Kuptsova}, title = {Van der {Pol} oscillator under random noise}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {67--80}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a6/} }
E. V. Kuptsova. Van der Pol oscillator under random noise. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 67-80. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a6/
[1] B. Van der Pol, “On a type of oscillation hysteresis in a simple triode generator”, Philos. Mag., 1922, no. 43, 177–193
[2] B. Van der Pol, “On oscillation hysteresis in a simple triode generator”, Philos. Mag., 1926, no. 43, 700–719
[3] A. A. Andronov, A. A. Vitt, S. E. Khaikin, Teoriya kolebanii, Fizmatlit, Moskva, 1959
[4] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974
[5] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Nauk. dumka, Kiev, 1971
[6] W. Boyce, E. Boyce, E. Richard, C. Diprima, Elementary Differential Equations and Boundary Value Problems, J. Wiley and Sons, 2005
[7] M. I. Rabinovich, D. I. Trubetskov, Vvedenie v teoriyu kolebanii i voln, Nauka, M., 1984
[8] P. S. Landa, Avtokolebatelnye sistemy s konechnym chislom stepenei svobody, Nauka, M., 1980
[9] A. Naife, Metody vozmuschenii, Mir, M., 1976
[10] V. I. Tikhonov, “Vozdeistvie fluktuatsii na prosteishie parametricheskie sistemy”, Avtomatika i telemekhanika, 19 (1958), 717–723
[11] V. I. Tikhonov, Statisticheskaya radiotekhnika, Sov. radio, M., 1966
[12] G. Adomian, Stochastic systems, Acad. Press, N. Y., 1983
[13] V. G. Zadorozhnii, Metody variatsionnogo analiza, izd. RKhD, Izhevsk, 2006
[14] R. L. Stratonovich, Izbrannye voprosy teorii flyuktuatsii v radiotekhnike, Sov. radio, M., 1961
[15] M. A. Yakunin, “Chislennyi analiz stokhasticheskogo ostsillyatora Van der Polya”, Trudy mezhd. konf. «Aktualnye problemy vychislitelnoi i prikladnoi matematiki», Marchukovskie chteniya-2019 (Novosibirsk, 2019), 564–570
[16] S. S. Guo, G. K. Er, “The probability solution of stochastic oscillators with even nonlinearity under poisson exitation”, Central Europ. J. Phys., 10:3 (2012), 702–707
[17] G. K. Er, H. T. Zhu, V. P. In, K. P. Kon, “PDF solution of nonlinear oscillators subjekt to multiplicative poisson pulse exitation on displacement”, Nonlinear Dinamics, 55:4 (2009), 337–348
[18] S. S. Artemev, M. A. Yakunin, “Parametricheskii analiz ostsilliruyuschikh reshenii SDU s vinerovskoi i puassonovskoi sostavlyayuschimi metodom Monte-Karlo”, Sib. zhurn. industr. matematiki, 20:2 (2017), 3–14
[19] H. Maha, I. L. El-Beltagy M. A. El-Kalla, B. S. El-desouky, “Solution of stochastic Van der Pol equation using spectral decomposition techniques”, Appl. Math., 11:3 (2020), 87–95
[20] N. D. Anh, V. L. Zakovorotny, D. N. Hao, “Response analysis of Van der Pol oscillator subjected to harmonic and random excitations”, Probab. Engrg. Mech., 37 (2014), 51–59
[21] L. Zhou, F. Chen, “Chaotic motions of the duffing-van der pol oscillator with external and parametric excitations”, Shock and Vibration, 1 (2014), 143–148
[22] Y. Li, Z. Wu, Z. Guoqi, W. Feng, W. Yuancen, “Stochastic P-bifurcation in bistable Van der Pol oscillator with fractional time-delay feedback under Gaussian white noise excitation”, Adv. Diff. Equ., 2019, no. 448, 53–69
[23] A. V. Borovskikh, A. I. Perov, Differentsialnye uravneniya, v. 1, Yurait, M., 2016
[24] B. P. Demidovich, Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967