Inverse problem for an equation of mixed parabolic-hyperbolic type with a Bessel operator
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work, for an equation of mixed parabolic-hyperbolic type with a Bessel operator, we study the inverse problem associated with the search for an unknown right-hand side. On based method separation of variables, the problem is reduced to solving an ordinary differential equations with respect to the coefficients of the Fourier—Bessel expansion of unknown functions in orthonormal Bessel functions of the first kind of zero order. A criterion for the uniqueness and existence of a solution to the stated problem is established.
Keywords: inverse problem, Fourier—Bessel series, eigenvalue, eigenfunction, uniqueness
Mots-clés : existence. .
@article{SJIM_2022_25_3_a1,
     author = {D. K. Durdiev and Sh. B. Merajova},
     title = {Inverse problem for an equation of mixed parabolic-hyperbolic type with a {Bessel} operator},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {14--24},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a1/}
}
TY  - JOUR
AU  - D. K. Durdiev
AU  - Sh. B. Merajova
TI  - Inverse problem for an equation of mixed parabolic-hyperbolic type with a Bessel operator
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 14
EP  - 24
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a1/
LA  - ru
ID  - SJIM_2022_25_3_a1
ER  - 
%0 Journal Article
%A D. K. Durdiev
%A Sh. B. Merajova
%T Inverse problem for an equation of mixed parabolic-hyperbolic type with a Bessel operator
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 14-24
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a1/
%G ru
%F SJIM_2022_25_3_a1
D. K. Durdiev; Sh. B. Merajova. Inverse problem for an equation of mixed parabolic-hyperbolic type with a Bessel operator. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 14-24. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a1/

[1] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Gostekhizdat, M., 1953

[2] I. M. Gelfand, “Nekotorye voprosy analiza i differentsialnykh uravnenii”, Uspekhi mat. nauk, 14:3 (1959), 3–19

[3] F. I. Frankl, Izbrannye trudy po gazovoi dinamike, Nauka, M., 1973

[4] F. Trikomi, O lineinykh uravneniyakh smeshannogo tipa, Gostekhizdat, M., 1947

[5] G. Fikera, “K edinoi teorii kraevykh zadach elliptiko-parabolicheskikh uravnenii vtorogo poryadka”, Matematika, 7:6 (1963), 99–121

[6] T. D. Dzhuraev, A. Sopuev, A. Mamazhanov, Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, FAN, Tashkent, 1986

[7] K. B. Sabitov, “K teorii uravnenii smeshannogo parabolo-giperbolicheskogo tipa so spektralnym parametrom”, Differents. uravneniya, 25:1 (1989), 117–126

[8] K. B. Sabitov, “Nelokalnaya zadacha dlya neodnorodnogo uravneniya parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Mat. zametki, 89:4 (2011), 596–602

[9] K. B. Sabitov, E. M. Safin, “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matematika, 2010, no. 4, 55–62

[10] K. B. Sabitov, E. M. Safin, “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Mat. zametki, 87:6 (2010), 907–918

[11] K. B. Sabitov, S. N. Sidirov, “Obratnaya zadacha dlya vyrozhdayuschegosya parabolo-giperbolicheskogo uravneniya s nelokalnym granichnym usloviem”, Izv. vuzov. Matematika, 2015, no. 1, 46–59

[12] K. B. Sabitov, “Nachalno-granichnaya i obratnye zadachi dlya neodnorodnogo uravneniya smeshannogo parabolo-giperbolicheskogo uravneniya”, Mat. zametki, 102:3 (2017), 415–435

[13] G. P. Tolstov, Ryady Fure, Gostekhizdat, M., 1960

[14] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980

[15] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[16] A. M. Denisov, Vvedenie v teoriyu obratnykh zadach, Izd-vo Mosk. gos. un-ta, M., 1994

[17] A. I. Prilepko, D. G. Orlovsky, I. A. Vasin, Methods for Solving Inverse Problems in Mathematical Physics, Pure Appl. Math., 231, Marcel Dekker, N.Y., 1999

[18] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009

[19] H. A Hasanov, V. G. Romanov, Introduction to Inverse Problems for Differential Equations, Springer Internat. Publ, 2017

[20] D. K. Durdiev, A. A. Rakhmonov, “Zadacha ob opredelenii dvumernogo yadra v sisteme integrodifferentsialnykh uravnenii vyazkouprugoi poristoi sredy”, Sib. zhurn. industr. matematiki, 23:2 (2020), 63–80

[21] D. K. Durdiev, Zh. D. Totieva, “O globalnoi razreshimosti odnoi mnogomernoi obratnoi zadachi dlya uravneniya s pamyatyu”, Sib. mat. zhurn., 62:2 (2021), 269–285

[22] A. L. Karchevskii, V. A. Dedok, “Vosstanovlenie koeffitsienta dielektricheskoi pronitsaemosti po modulyu rasseyannogo elektricheskogo polya”, Sib. zhurn. industr. matematiki, 21:3 (2018), 50–59

[23] V. G. Romanov, A. L. Karchevsky, “Determination of permittivity and conductivity of medium in a vicinity of a well having complex profile”, Eurasian J. Math. Comput. Appl., 6:4 (2018), 62–72