Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 5-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of optimal control for a linear system with constant coefficients with convex integral performance index contains small parameter in integral part in the class of piecewise continuous controls with a smooth control constraints. The article is based on asymptotic of the initial vector of the adjoint state, which determines the type of optimal control. In the time-optimal control problem limit problem has a solution with discontinuous control but the perturbed problem has continuous control. It is proved that in this case the solution is decomposed in an series with a complex structure. But optimal control is decomposed in a power series of expansion in small parameter in the cheap control problem.
Keywords: optimal control, cheap controls, asymptotic expansion, small parameter. .
@article{SJIM_2022_25_3_a0,
     author = {A. R. Danilin and A. A. Shaburov},
     title = {Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {25},
     number = {3},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/}
}
TY  - JOUR
AU  - A. R. Danilin
AU  - A. A. Shaburov
TI  - Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 5
EP  - 13
VL  - 25
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/
LA  - ru
ID  - SJIM_2022_25_3_a0
ER  - 
%0 Journal Article
%A A. R. Danilin
%A A. A. Shaburov
%T Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 5-13
%V 25
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/
%G ru
%F SJIM_2022_25_3_a0
A. R. Danilin; A. A. Shaburov. Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/

[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961

[2] N. N. Krasovskii, Teoriya upravleniya dvizheniem, Lineinye sistemy, Nauka, M., 1968

[3] E. B. Li, L. Markuc, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972

[4] M. G. Dmitriev, G. A. Kurina, “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51

[5] V. Ya. Glizer, M. G. Dmitriev, “Asimptotika resheniya odnoi singulyarno vozmuschennoi zadachi Koshi, voznikayuschei v teorii optimalnogo upravleniya”, Differents. uravneniya, 14:4 (1978), 601–612

[6] M. A. Kalashnikova, G. A. Kurina, “Asimptoticheskoe reshenie lineinokvadratichnykh zadach s deshevymi upravleniyami raznoi tseny”, Tr. IMM UrO RAN, 22, no. 1, 2016, 124–139

[7] A. R. Danilin, A. M. Ilin, “Asimptoticheskoe povedenie resheniya zadachi bystrodeistviya dlya lineinoi sistemy pri vozmuschenii nachalnykh dannykh”, Dokl. AN, 350:2 (1996), 155–157

[8] A. R. Danilin, A. M. Ilin, “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926

[9] A. R. Danilin, A. A. Shaburov, “Asimptoticheskoe razlozhenie resheniya odnoi singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva, terminalnaya chast kotorogo additivno zavisit ot medlennykh i bystrykh peremennykh”, Izv. IMI UdGU, 55 (2020), 33–41

[10] A. A. Shaburov, “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva, terminalnaya chast kotorogo zavisit tolko ot medlennykh peremennykh”, Tr. IMM UrO RAN, 24, no. 2, 2018, 280–289 | DOI

[11] E. M. Galeev, V. M. Tikhomirov, Kratkii kurs teorii ekstremalnykh zadach, Izd-vo MGU, M., 1989

[12] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973

[13] A. R. Danilin, O. O. Kovrizhnykh, “Asimptotika optimalnogo vremeni perevoda lineinoi upravlyaemoi sistemy s nulevymi veschestvennymi chastyami sobstvennykh znachenii matritsy pri bystrykh peremennykh na neogranichennoe tselevoe mnozhestvo”, Tr. IMM UrO RAN, 27, no. 1, 2021, 48–61