Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_3_a0, author = {A. R. Danilin and A. A. Shaburov}, title = {Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {5--13}, publisher = {mathdoc}, volume = {25}, number = {3}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/} }
TY - JOUR AU - A. R. Danilin AU - A. A. Shaburov TI - Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 5 EP - 13 VL - 25 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/ LA - ru ID - SJIM_2022_25_3_a0 ER -
%0 Journal Article %A A. R. Danilin %A A. A. Shaburov %T Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 5-13 %V 25 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/ %G ru %F SJIM_2022_25_3_a0
A. R. Danilin; A. A. Shaburov. Asymptotic expansion of solution of one singularly perturbed optimal control problem with convex integral performance index and cheap control. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 3, pp. 5-13. http://geodesic.mathdoc.fr/item/SJIM_2022_25_3_a0/
[1] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze, E. F. Mischenko, Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961
[2] N. N. Krasovskii, Teoriya upravleniya dvizheniem, Lineinye sistemy, Nauka, M., 1968
[3] E. B. Li, L. Markuc, Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972
[4] M. G. Dmitriev, G. A. Kurina, “Singulyarnye vozmuscheniya v zadachakh upravleniya”, Avtomatika i telemekhanika, 2006, no. 1, 3–51
[5] V. Ya. Glizer, M. G. Dmitriev, “Asimptotika resheniya odnoi singulyarno vozmuschennoi zadachi Koshi, voznikayuschei v teorii optimalnogo upravleniya”, Differents. uravneniya, 14:4 (1978), 601–612
[6] M. A. Kalashnikova, G. A. Kurina, “Asimptoticheskoe reshenie lineinokvadratichnykh zadach s deshevymi upravleniyami raznoi tseny”, Tr. IMM UrO RAN, 22, no. 1, 2016, 124–139
[7] A. R. Danilin, A. M. Ilin, “Asimptoticheskoe povedenie resheniya zadachi bystrodeistviya dlya lineinoi sistemy pri vozmuschenii nachalnykh dannykh”, Dokl. AN, 350:2 (1996), 155–157
[8] A. R. Danilin, A. M. Ilin, “O strukture resheniya odnoi vozmuschennoi zadachi bystrodeistviya”, Fundament. i prikl. matematika, 4:3 (1998), 905–926
[9] A. R. Danilin, A. A. Shaburov, “Asimptoticheskoe razlozhenie resheniya odnoi singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva, terminalnaya chast kotorogo additivno zavisit ot medlennykh i bystrykh peremennykh”, Izv. IMI UdGU, 55 (2020), 33–41
[10] A. A. Shaburov, “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennoi zadachi optimalnogo upravleniya s integralnym vypuklym kriteriem kachestva, terminalnaya chast kotorogo zavisit tolko ot medlennykh peremennykh”, Tr. IMM UrO RAN, 24, no. 2, 2018, 280–289 | DOI
[11] E. M. Galeev, V. M. Tikhomirov, Kratkii kurs teorii ekstremalnykh zadach, Izd-vo MGU, M., 1989
[12] R. Rokafellar, Vypuklyi analiz, Mir, M., 1973
[13] A. R. Danilin, O. O. Kovrizhnykh, “Asimptotika optimalnogo vremeni perevoda lineinoi upravlyaemoi sistemy s nulevymi veschestvennymi chastyami sobstvennykh znachenii matritsy pri bystrykh peremennykh na neogranichennoe tselevoe mnozhestvo”, Tr. IMM UrO RAN, 27, no. 1, 2021, 48–61