Integration of the nonlinear Korteweg---de Vries equation with loaded term and source
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 127-142.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple algorithm for deriving an analog of the system of Dubrovin differential equations is proposed. It is shown that the sum of a uniformly convergent functional series constructed by solving the system of Dubrovin equations and the first trace formula really satisfies the loaded nonlinear Korteweg—de Vries equation with a source. In addition, it has been proven that if the initial function is a real $\pi$-periodic analytic function, then the solution of the Cauchy problem is also a real analytic function with respect to the variable $x$; and if the number $\pi/n$ is the period of the initial function, then the number $\pi/n$ is the period for solving the Cauchy problem with respect to the variable $x$. Here $n$ is a natural number, $n\geqslant 2$.
Keywords: Korteweg—de Vries equation, trace formulas, inverse spectral problem, Hill operator, Dubrovin’s system of equations. .
@article{SJIM_2022_25_2_a8,
     author = {A. B. Khasanov and T. G. Hasanov},
     title = {Integration of the nonlinear {Korteweg---de} {Vries} equation with loaded term and source},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {127--142},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a8/}
}
TY  - JOUR
AU  - A. B. Khasanov
AU  - T. G. Hasanov
TI  - Integration of the nonlinear Korteweg---de Vries equation with loaded term and source
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 127
EP  - 142
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a8/
LA  - ru
ID  - SJIM_2022_25_2_a8
ER  - 
%0 Journal Article
%A A. B. Khasanov
%A T. G. Hasanov
%T Integration of the nonlinear Korteweg---de Vries equation with loaded term and source
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 127-142
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a8/
%G ru
%F SJIM_2022_25_2_a8
A. B. Khasanov; T. G. Hasanov. Integration of the nonlinear Korteweg---de Vries equation with loaded term and source. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 127-142. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a8/

[1] C. Gardner, I. Green, M. Kruskal, R. Miura, “A method for solving the Korteveg de Vries equation”, Phys. Rev. Lett., 19 (1967), 1095–1098 | DOI

[2] L. D. Faddeev, “Svoistva $S$-matritsy odnomernogo uravneniya Shredingera”, Tr. MIAN, 73, 1964, 314–336 | Zbl

[3] V. A. Marchenko, Operatory Shturma Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977

[4] B. M. Levitan, Obratnye zadachi Shturma Liuvillya, Nauka, M., 1984 | MR

[5] P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves”, Comm. Pure Appl. Math., 21 (1968), 467–490 | DOI | MR | Zbl

[6] Its. A.R., V. B. Matveev, “Operatory Shredingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega de Friza”, Teor. i mat. fizika, 23:1 (1975), 51–8 | MR

[7] B. A. Dubrovin, S. P. Novikov, “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega de Friza”, Zhurn. eksperiment. i teor. fiziki, 67:12 (1974), 2131–2143 | MR

[8] Yu. A. Mitropolskii, Bogolyubov N. N. (ml.), A. K. Prikarpatskii, V. G. Samoilenko, Integriruemye dinamicheskie sistemy: spektralnye i differentsialno-geometricheskie aspekty, Nauk. dumka, Kiev, 1987

[9] V. E. Zakharov, S. V. Manakov, S. P. Novikov, L. P. Pitaevskii, Teoriya solitonov: metod obratnoi zadachi, Nauka, M., 1980 | MR

[10] E. L. Ince, Ordinary Differential Equations, Dover, N.Y., 1956 | MR

[11] B. A. Dubrovin, “Periodicheskaya zadacha dlya uravneniya Kortevega de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i ego prilozheniya, 9:3 (1975), 41–51 | MR | Zbl

[12] P. G. Grinevich, I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Geometry, Topology and Math. Physics, 224:2 (2008), 125–138 | MR | Zbl

[13] A. B. Khasanov, A. B. Yakhshimuratov, “Ob uravneniya Kortevega de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, Teor. i mat. fizika, 164:2 (2010), 214–221 | Zbl

[14] A. Yakshimuratov, “The nonlinear Schredinger equation with a self-consistent source in the class of periodic functions”, Math. Phys. Anal. Geom., 14:2 (2011), 153–169 | DOI | MR

[15] A. O. Smirnov, “Ellipticheskie resheniya nelineinogo uravneniya Shredingera i modifitsirovannogo uravneniya Kortevega de Friza”, Mat. sb., 185:8 (1994), 103–114 | Zbl

[16] P. Lax, “Almost periodic solutions of the KdF equation”, SCAM Rev., 18:3 (1976), 351–575 | MR

[17] A. V. Domrin, “Meromorfnoe prodolzhenie reshenii solitonnykh uravnenii”, Izv. RAN. Ser. mat., 74:3 (2010), 23–44 | MR | Zbl

[18] V. K. Mel'nikov, “Integration method of the Korteweg-de Vries equation with a self-consistent source”, Phys. Lett. A, 133:9 (1988), 493–496 | DOI | MR

[19] V. K. Mel'nikov, “Integration of the Korteweg-de Vries equation with source”, Inverse Problems, 6:2 (1990), 233–246 | DOI | MR

[20] V. Leon, A. Latifi, “Solution of an initial-boundary value problem for couplet nonlinear waves”, J. Phys. A: Math. Gen., 23 (1990), 1385–1403 | DOI | MR | Zbl

[21] C. Claude, J. Leon, A. Latifi, “Nonlinear resonant scattering and plasma instability: an integrable model”, J. Math. Phys., 32 (1991), 3321–3330 | DOI | MR | Zbl

[22] A. Latifi, New example of integrable nonlinear couplet equations with exact asymptotic singular solution in the context of laser-plasma interaction, arXiv: 1508.05755 | MR

[23] A. M. Nakhusheev, “Nagruzhennye uravneniya i ikh prilozheniya”, Differents. uravneniya, 19:1 (1983), 86–94 | MR

[24] A. M. Nakhusheev, Uravneniya matematicheskoi biologii, Vyssh. shkola, M., 1995

[25] A. I. Kozhanov, “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matematiki i mat. fiziki, 44 (2004), 694–716 | MR | Zbl

[26] A. A. Lugovtsov, “Rasprostranenie nelineinykh voln v gazozhidkostnoi srede. Tochnye i priblizhennye analiticheskie resheniya volnovykh uravnenii”, Prikl. matematika i tekhn. fizika, 51:1 (2010), 54–61 | MR | Zbl

[27] A. A. Lugovtsov, “Rasprostranenie nelineinykh voln v neodnorodnoi gazozhidkostnoi srede. Vyvod volnovykh uravnenii v priblizhenii Kortevega de Friza”, Prikl. matematika i tekhn. fizika, 50:2 (2009), 188–197 | MR

[28] E. Ch. Titchmarsh, Razlozheniya po sobstvennym funktsiyam, svyazannye s differentsialnymi uravneniyami vtorogo poryadka, v. 1, 2, Izd-vo inostr. lit., M., 1961

[29] I. V. Stankevich, “Ob odnoi zadache spektralnogo analiza dlya uravneniya Khilla”, Dokl. AN SSSR, 192:1 (1970), 34–37 | Zbl

[30] N. I. Akhiezer, “Kontinualnyi analog ortogonalnykh mnogochlenov na sisteme intervalov”, Dokl. AN SSSR, 141:2 (1961), 262–266

[31] E. Trubowtz, “The inverse problem for periodic potentials”, Comm. Pure. Appl. Math., 30 (1977), 321–337 | DOI | MR

[32] H. Hochstadt, “On the determination of Hill's equation from its spectrum”, Arch. Rat. Mech. Anal., 19 (1965), 353–362 | DOI | MR | Zbl

[33] H. P. Mckean, P. Moerbeke, “The spectrum of Hill's equation”, Invent. Math., 30:3 (1975), 217–274 | DOI | MR | Zbl

[34] H. Flachka, “On the inverse problem for Hill's operator”, Arch. Ration. Mech. Anal., 59:4 (1975), 293–309 | DOI | MR

[35] H. Hochstadt, “Estimates on the stability interval-s for the Hill's equation”, Proc. AMS, 14 (1963), 930–932 | MR | Zbl

[36] B. M. Levitan, G. Sh. Guseinov, “Vychislenie glavnogo chlena asimptotiki dliny lakuny periodicheskoi zadachi Shturma–Liuvillya”, Serdika B'lgarsko matematichesko spisanie, 3:4 (1977), 273–280 www.math.bas.bg/serdica/1977/1977-273-280.pdf | MR | Zbl

[37] H. Hochstadt, “A Generalization of Borg's inverse theorem for Hill's equations”, J. Math. Anal. Appl., 102 (1984), 599–605 | DOI | MR | Zbl

[38] G. Borg, “Eine Umkehrung der Sturm-Liouvillschen Eigenwertaufgable: Bestimmung der Differentialgleichung durch die Eigenwete”, Acta Mathyu, 78 (1946), 1–96 | DOI | MR | Zbl

[39] Y. Zeng, W. X. Ma, R. Lin, “Integration of the solution hierarchy with self-consistent sources”, J. Math. Phys., 41:8 (2000), 5453–5489 | DOI | MR | Zbl

[40] A. B. Khasanov, U. A. Khoitmetov, “Integrirovanie uravneniya Kortevega de Friza s nagruzhennym chlenom v klasse bystroubyvayuschikh funktsii”, Dokl. AN RUz, 2021, no. 1, 13–18