Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_2_a6, author = {S. I. Senashov and I. L. Savostyanova}, title = {The use of conservation laws for solving boundary value problems of the {Moisila---Teodorescu} system}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {101--109}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/} }
TY - JOUR AU - S. I. Senashov AU - I. L. Savostyanova TI - The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 101 EP - 109 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/ LA - ru ID - SJIM_2022_25_2_a6 ER -
%0 Journal Article %A S. I. Senashov %A I. L. Savostyanova %T The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system %J Sibirskij žurnal industrialʹnoj matematiki %D 2022 %P 101-109 %V 25 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/ %G ru %F SJIM_2022_25_2_a6
S. I. Senashov; I. L. Savostyanova. The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 101-109. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/
[1] Yu. M. Grigorev, “Nekotorye resheniya prostranstvennykh staticheskikh uravnenii Lame”, Mat. problemy mekhaniki sploshnykh sred, 67 (1984), 29–36
[2] G. G. Moisil, N. Theodorescu, “Fonctions holomorphes dans l'tspase”, Mathematica, 5 (1931), 141–153
[3] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorgo poryadka, Nauka, M., 1966 | MR
[4] B. D. Annin, V. D. Bondar, S. I. Senashov, “Gruppovoi analiz i tochnye resheniya uravnenii ploskoi deformatsii neszhimaemogo nelineinogo materiala”, Sib. zhurn. industr. matematiki, 23:1 (2020), 11–15 | MR
[5] S. I. Senashov, I. L. Savostyanova, “Ob uprugom kruchenii vokrug trekh osei”, Sib. zhurn. industr. matematiki, 24:1 (2021), 120–125
[6] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[7] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR
[8] A. M. Vinogradov, I. S. Krasilschik, V. V. Lychagin, Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR
[9] S. I. Senashov, “O zakonakh sokhraneniya uravnenii plastichnosti”, Dokl. AN SSSR, 320:3 (1991), 606 | Zbl
[10] S. I. Senashov, “Zakony sokhraneniya i tochnoe reshenie zadachi Koshi dlya uravnenii plastichnosti”, Dokl. AN, 345:5 (1995), 619 | Zbl
[11] S. I. Senashov, O. V. Gomonova, “Construction of elastoplastic boundary in problem of tension of a plate weakened by holes”, J. Nonlinear Mech., 108 (2019), 7–10 | DOI
[12] O. V. Gomonova, S. I. Senashov, “Determination of elastic and plastic deformation regions in the problem of uniaxial tension of a plate weakened by holes”, J. Appl. Mech. Tech. Physics, 62:1 (2021), 179–186 | DOI | MR | Zbl
[13] P. P. Kiryakov, S. I. Senashov, A. N. Yakhno, Prilozhenie simmetrii i zakonov sokhraneiya k resheniyu differentsialnykh uravnenii, Izd-vo SO RAN, Novosibirsk, 2001