The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 101-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Moisil—Teodorescu system is a three-dimensional analogue of the Cauchy—Riemann system of equations and is related to the spatial static Lame equations. Many works have investigated these equations. Analogs of many results known for the Cauchy—Riemann equations in these papers are obtained. Solutions of the Moisila—Teodorescu system preserve many properties of analytical functions of a complex variable. In our work, some exact solutions of this system are constructed and an infinite series of new conservation laws for the equations of the Moisil—Teodorescu system is given. These laws are linear in derivatives. We have constructed the laws used to solve the boundary value problems of the Moisila—Teodorescu system.
Keywords: conservation laws, boundary value problems, the Moisil—Teodorescu system. .
@article{SJIM_2022_25_2_a6,
     author = {S. I. Senashov and I. L. Savostyanova},
     title = {The use of conservation laws for solving boundary value problems of the {Moisila---Teodorescu} system},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {101--109},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/}
}
TY  - JOUR
AU  - S. I. Senashov
AU  - I. L. Savostyanova
TI  - The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 101
EP  - 109
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/
LA  - ru
ID  - SJIM_2022_25_2_a6
ER  - 
%0 Journal Article
%A S. I. Senashov
%A I. L. Savostyanova
%T The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 101-109
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/
%G ru
%F SJIM_2022_25_2_a6
S. I. Senashov; I. L. Savostyanova. The use of conservation laws for solving boundary value problems of the Moisila---Teodorescu system. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 101-109. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a6/

[1] Yu. M. Grigorev, “Nekotorye resheniya prostranstvennykh staticheskikh uravnenii Lame”, Mat. problemy mekhaniki sploshnykh sred, 67 (1984), 29–36

[2] G. G. Moisil, N. Theodorescu, “Fonctions holomorphes dans l'tspase”, Mathematica, 5 (1931), 141–153

[3] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorgo poryadka, Nauka, M., 1966 | MR

[4] B. D. Annin, V. D. Bondar, S. I. Senashov, “Gruppovoi analiz i tochnye resheniya uravnenii ploskoi deformatsii neszhimaemogo nelineinogo materiala”, Sib. zhurn. industr. matematiki, 23:1 (2020), 11–15 | MR

[5] S. I. Senashov, I. L. Savostyanova, “Ob uprugom kruchenii vokrug trekh osei”, Sib. zhurn. industr. matematiki, 24:1 (2021), 120–125

[6] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[7] N. Kh. Ibragimov, Gruppy preobrazovanii v matematicheskoi fizike, Nauka, M., 1983 | MR

[8] A. M. Vinogradov, I. S. Krasilschik, V. V. Lychagin, Vvedenie v geometriyu nelineinykh differentsialnykh uravnenii, Nauka, M., 1986 | MR

[9] S. I. Senashov, “O zakonakh sokhraneniya uravnenii plastichnosti”, Dokl. AN SSSR, 320:3 (1991), 606 | Zbl

[10] S. I. Senashov, “Zakony sokhraneniya i tochnoe reshenie zadachi Koshi dlya uravnenii plastichnosti”, Dokl. AN, 345:5 (1995), 619 | Zbl

[11] S. I. Senashov, O. V. Gomonova, “Construction of elastoplastic boundary in problem of tension of a plate weakened by holes”, J. Nonlinear Mech., 108 (2019), 7–10 | DOI

[12] O. V. Gomonova, S. I. Senashov, “Determination of elastic and plastic deformation regions in the problem of uniaxial tension of a plate weakened by holes”, J. Appl. Mech. Tech. Physics, 62:1 (2021), 179–186 | DOI | MR | Zbl

[13] P. P. Kiryakov, S. I. Senashov, A. N. Yakhno, Prilozhenie simmetrii i zakonov sokhraneiya k resheniyu differentsialnykh uravnenii, Izd-vo SO RAN, Novosibirsk, 2001