On the method of factorization of matrix-functions in the Wiener algebra of order 2
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 32-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is found for reducing the problem of factorization of an arbitrary matrix-function with a negative total index from a (everywhere dense subalgebra) Wiener algebra of order 2 to the truncated Wiener—Hopf equation. With the help of the obtained method, an effective factorization of one class of matrix functions from the Wiener algebra of order 2 is constructed.
Keywords: Wiener algebra, factorization problem, truncated Wiener—Hopf equation. .
Mots-clés : partial indices
@article{SJIM_2022_25_2_a2,
     author = {A. F. Voronin},
     title = {On the method of factorization of matrix-functions in the {Wiener} algebra of order 2},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On the method of factorization of matrix-functions in the Wiener algebra of order 2
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 32
EP  - 45
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/
LA  - ru
ID  - SJIM_2022_25_2_a2
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On the method of factorization of matrix-functions in the Wiener algebra of order 2
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 32-45
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/
%G ru
%F SJIM_2022_25_2_a2
A. F. Voronin. On the method of factorization of matrix-functions in the Wiener algebra of order 2. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 32-45. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/

[1] N. I. Muskhelishvili, Singulyarnye integralnye uravneniya, Nauka, M., 1968

[2] F. D. Gakhov, “Kraevaya zadacha Rimana dlya sistemy n par funktsii”, Uspekhi mat. nauk, 7:4 (1954), 3–54 | MR

[3] I. Ts. Gokhberg, M. G. Krein, “Sistemy integralnykh uravnenii na polupryamoi s yadrami, zavisyaschimi ot raznosti argumentov”, Uspekhi mat. nauk, 13:2 (80) (1958), 3–72 | Zbl

[4] J. Plemeli, “Riemannsche Funktionenscharen mit gegebener Monodromiegruppe”, Monatshefte Math. Phys., 19 (1908), 211–245 | DOI | MR

[5] I. Gohberg, M. A. Kaashoek, I. M. Spitkovsky, “An overview of matrix factorization theory and operator applications, factorization and integrable systems”, Oper. Theory Adv. Appl., 141 (2003), 1–102 | MR | Zbl

[6] A. F. Voronin, “Metod opredeleniya chastnykh indeksov simmetrichnykh matrits-funktsii”, Sib. mat. zhurn., 52:1 (2011), 54–69 | MR | Zbl

[7] S. V. Mishuris G. Rogosin, “Cructive methods for factorization of matrix-functions”, IMA J. Appl. Math., 81:1 (2016), 365–391 | MR | Zbl

[8] A. F. Voronin, “O svyazi zadachi faktorizatsii v algebre Vinera i usechennogo uravneniya Vinera Khopfa”, Izv. vuzov. Matematika, 12 (2020), 22–31 | Zbl

[9] V. M. Adukov, “Faktorizatsiya Vinera Khopfa meromorfnykh matrits-funktsii”, Algebra i analiz, 4:1 (1992), 54–74

[10] Yu. L. Shmulyan, “Zadacha Rimana s polozhitelno opredelennoi matritsei”, Uspekhi mat. nauk, 8:2 (54) (1953), 143–145 | MR

[11] A. F. Voronin, “Chastnye indeksy unitarnoi i ermitovoi matrits-funktsii”, Sib. mat. zhurn., 51:5 (2010), 1010–1016 | MR | Zbl

[12] L. Rodman, I. M. Spitkovsky, “Frization of matrices with symmetries over function algebras”, Integral Equations Operator Theory, 80 (2014), 469–510 | DOI | MR | Zbl

[13] I. M. Spitkovsky, A. F. Voronin, “A note on the factorization of some structured matrix functions”, Integral Equations Operator Theory, 90:39 (2018), 39–46 | DOI | MR

[14] E. V. Semenko, “Svedenie vektornykh kraevykh zadach na rimanovoi poverkhnosti k odnomernym”, Sib. mat. zhurn., 60:1 (2019), 201–213 | MR | Zbl

[15] L. Ephremidze, I. Spitkovsky, “On explicit Wiener Hopf factorization of $2\times 2$ matrices in a vicinity of a given matrix”, Proc. Royal Soc. Math. Phys. Engrg. Sci., 476:2238 (2020), 20200027 | MR | Zbl

[16] S. N. Kiyasov, “K voprosu razreshimosti v zamknutoi forme nekotorykh zadach lineinogo sopryazheniya dlya trekhmernogo kusochno-analiticheskogo vektora”, Izv. vuzov. Matematika, 2 (2020), 22–28 | MR | Zbl

[17] A. F. Voronin, “Some questions on the relationship of the factorization problem of matrix functions and the truncated Wiener-Hopf equation in the Wiener algebra”, Sib. Electron. Mat. Izv., 18:2 (2021), 1615–1624 | DOI | MR | Zbl

[18] P. P. Zabreiko, A. I. Koshelev i dr., Integralnye uravneniya, Nauka, M., 1968

[19] A. F. Voronin, “Neodnorodnaya vektornaya kraevaya zadacha Rimana i uravnenie v svertkakh na konechnom intervale”, Izv. vuzov. Matematika, 3 (2021), 15–28 | Zbl