On the method of factorization of matrix-functions in the Wiener algebra of order 2
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 32-45

Voir la notice de l'article provenant de la source Math-Net.Ru

A method is found for reducing the problem of factorization of an arbitrary matrix-function with a negative total index from a (everywhere dense subalgebra) Wiener algebra of order 2 to the truncated Wiener—Hopf equation. With the help of the obtained method, an effective factorization of one class of matrix functions from the Wiener algebra of order 2 is constructed.
Keywords: Wiener algebra, factorization problem, truncated Wiener—Hopf equation. .
Mots-clés : partial indices
@article{SJIM_2022_25_2_a2,
     author = {A. F. Voronin},
     title = {On the method of factorization of matrix-functions in the {Wiener} algebra of order 2},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--45},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/}
}
TY  - JOUR
AU  - A. F. Voronin
TI  - On the method of factorization of matrix-functions in the Wiener algebra of order 2
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 32
EP  - 45
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/
LA  - ru
ID  - SJIM_2022_25_2_a2
ER  - 
%0 Journal Article
%A A. F. Voronin
%T On the method of factorization of matrix-functions in the Wiener algebra of order 2
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 32-45
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/
%G ru
%F SJIM_2022_25_2_a2
A. F. Voronin. On the method of factorization of matrix-functions in the Wiener algebra of order 2. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 32-45. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a2/