The~heat convection in~a~rotating tube
Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 5-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

The unsteady boundary value fluid motion problem in the rotating cylindrical tube is investigated. There are no mass forces, since it is assumed that the angular velocity of the cylinder rotation is high enough. The Oberbeck—Boussinesq equations are used to describe the fluid motion. From the mathematical point of view, the problem is inverse with respect to the pressure gradients along the cylinder axis. Based on the priori estimates, conditions are obtained under which the stationary inverse problem solution is exponentially stable. In Laplace images, the solution is found in the form of quadratures. Sufficient conditions are given for the non-stationary problem solution to reach the stationary mode with increasing time.
Mots-clés : convection, Laplace transform. .
Keywords: inverse problem, priori estimates, asymptotic behavior
@article{SJIM_2022_25_2_a0,
     author = {V. K. Andreev and I. V. Vakhr{\cyra}meev and E. P. Magdenko},
     title = {The~heat convection in~a~rotating tube},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--20},
     publisher = {mathdoc},
     volume = {25},
     number = {2},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/}
}
TY  - JOUR
AU  - V. K. Andreev
AU  - I. V. Vakhrаmeev
AU  - E. P. Magdenko
TI  - The~heat convection in~a~rotating tube
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2022
SP  - 5
EP  - 20
VL  - 25
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/
LA  - ru
ID  - SJIM_2022_25_2_a0
ER  - 
%0 Journal Article
%A V. K. Andreev
%A I. V. Vakhrаmeev
%A E. P. Magdenko
%T The~heat convection in~a~rotating tube
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2022
%P 5-20
%V 25
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/
%G ru
%F SJIM_2022_25_2_a0
V. K. Andreev; I. V. Vakhrаmeev; E. P. Magdenko. The~heat convection in~a~rotating tube. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/

[1] V. Barcilon, J. Pedlosky, “On the steady motions produced by a stable stratification in a rapidly rotating fluid”, J. Fluid Mech., 29 (1967), 673 | DOI | Zbl

[2] G. M. Homsy, J. L. Hudson, “Centrifugal covection and its effect on the asymtotic stability of a bounded rotating fluid heated from below”, J. Fluid Mech., 48 (1971), 605 | DOI | Zbl

[3] J. E. Hart, “On the influence of centrifugal buoyncy on rotating convection”, J. Fluid Mech., 403 (2000), 133 | DOI | MR | Zbl

[4] F. H. Busse, “On the influence of centrifugal buoyncy on rotating convection”, J. Fluid Mech., 44 (1970), 441 | DOI | Zbl

[5] J. Herrmann, F. H. Busse, “Convection in a rotating cylindrical annulus. Part 4. Modulation and transition to chaos at low Prandtl numbers”, J. Fluid Mech., 350 (1997), 209 | DOI | MR | Zbl

[6] E. Bagheri, Bing-Chen Wang, “Direct numerical simulation of turbulent heat transfer in concentric annular pipe flows”, Phys. Fluids, 33:5 (2021), 055131 | DOI

[7] A. Vjatkin, R. Siraev, V. Kozlov, “Theoretical and experimental study of thermal convection in rotating horizontal annulus”, Microgravity Science and Technology, 32:6 (2020), 1–13 | DOI

[8] G. Z. Gershuni, E. M. Zhukhovitskii, Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972

[9] V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev, Mathematical Models of Convection, Walter De Gruyter, Berlin–Boston, 2020 | MR

[10] I. M. Yavorskaya, Yu. M. Belyaev, Konvektivnye techeniya vo vraschayuschikhsya polostyakh, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 17, VINITI, M., 1982

[11] M. Lappa, Rotating Thermal Flows in Natural and Industrial Processes, Wiley Sons, Chichester, 2012 | MR

[12] A. A. Vyatkin, A. A. Ivanova, V. G. Kozlov, “Konvektivnaya ustoichivost neizotermicheskoi zhidkosti vo vraschayuschemsya gorizontalnom koaksialnom zazore”, Izv. RAN. Mekhanika zhidkosti i gaza, 2010, no. 1, 12–21 | Zbl

[13] A. A. Vyatkin, A. A. Ivanova, V. G. Kozlov, R. R. Sabirov, “Konvektsiya teplovydelyayuschei zhidkosti vo vraschayuschemsya gorizontalnom tsilindre”, Izv. RAN. Mekhanika zhidkosti i gaza, 2014, no. 1, 21–30

[14] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[15] V. K. Andreev, “On the Friedrichs inequality for composite domains”, J. Sib. Federal Univ. Mathematics and Physics, 2:2 (2009), 146–157

[16] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1972 | MR

[17] V. I. Krylov, N. S. Skoblya, Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, Nauka, M., 1974

[18] V. I. Krylov, N. S. Skoblya, Spravochnaya kniga po chislennomu obrascheniyu preobrazovaniya Laplasa, Nauka i tekhnika, Minsk, 1968