Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2022_25_2_a0, author = {V. K. Andreev and I. V. Vakhr{\cyra}meev and E. P. Magdenko}, title = {The~heat convection in~a~rotating tube}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {5--20}, publisher = {mathdoc}, volume = {25}, number = {2}, year = {2022}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/} }
TY - JOUR AU - V. K. Andreev AU - I. V. Vakhrаmeev AU - E. P. Magdenko TI - The~heat convection in~a~rotating tube JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2022 SP - 5 EP - 20 VL - 25 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/ LA - ru ID - SJIM_2022_25_2_a0 ER -
V. K. Andreev; I. V. Vakhrаmeev; E. P. Magdenko. The~heat convection in~a~rotating tube. Sibirskij žurnal industrialʹnoj matematiki, Tome 25 (2022) no. 2, pp. 5-20. http://geodesic.mathdoc.fr/item/SJIM_2022_25_2_a0/
[1] V. Barcilon, J. Pedlosky, “On the steady motions produced by a stable stratification in a rapidly rotating fluid”, J. Fluid Mech., 29 (1967), 673 | DOI | Zbl
[2] G. M. Homsy, J. L. Hudson, “Centrifugal covection and its effect on the asymtotic stability of a bounded rotating fluid heated from below”, J. Fluid Mech., 48 (1971), 605 | DOI | Zbl
[3] J. E. Hart, “On the influence of centrifugal buoyncy on rotating convection”, J. Fluid Mech., 403 (2000), 133 | DOI | MR | Zbl
[4] F. H. Busse, “On the influence of centrifugal buoyncy on rotating convection”, J. Fluid Mech., 44 (1970), 441 | DOI | Zbl
[5] J. Herrmann, F. H. Busse, “Convection in a rotating cylindrical annulus. Part 4. Modulation and transition to chaos at low Prandtl numbers”, J. Fluid Mech., 350 (1997), 209 | DOI | MR | Zbl
[6] E. Bagheri, Bing-Chen Wang, “Direct numerical simulation of turbulent heat transfer in concentric annular pipe flows”, Phys. Fluids, 33:5 (2021), 055131 | DOI
[7] A. Vjatkin, R. Siraev, V. Kozlov, “Theoretical and experimental study of thermal convection in rotating horizontal annulus”, Microgravity Science and Technology, 32:6 (2020), 1–13 | DOI
[8] G. Z. Gershuni, E. M. Zhukhovitskii, Konvektivnaya ustoichivost neszhimaemoi zhidkosti, Nauka, M., 1972
[9] V. K. Andreev, Y. A. Gaponenko, O. N. Goncharova, V. V. Pukhnachev, Mathematical Models of Convection, Walter De Gruyter, Berlin–Boston, 2020 | MR
[10] I. M. Yavorskaya, Yu. M. Belyaev, Konvektivnye techeniya vo vraschayuschikhsya polostyakh, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 17, VINITI, M., 1982
[11] M. Lappa, Rotating Thermal Flows in Natural and Industrial Processes, Wiley Sons, Chichester, 2012 | MR
[12] A. A. Vyatkin, A. A. Ivanova, V. G. Kozlov, “Konvektivnaya ustoichivost neizotermicheskoi zhidkosti vo vraschayuschemsya gorizontalnom koaksialnom zazore”, Izv. RAN. Mekhanika zhidkosti i gaza, 2010, no. 1, 12–21 | Zbl
[13] A. A. Vyatkin, A. A. Ivanova, V. G. Kozlov, R. R. Sabirov, “Konvektsiya teplovydelyayuschei zhidkosti vo vraschayuschemsya gorizontalnom tsilindre”, Izv. RAN. Mekhanika zhidkosti i gaza, 2014, no. 1, 21–30
[14] L. V. Ovsyannikov, Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[15] V. K. Andreev, “On the Friedrichs inequality for composite domains”, J. Sib. Federal Univ. Mathematics and Physics, 2:2 (2009), 146–157
[16] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1972 | MR
[17] V. I. Krylov, N. S. Skoblya, Metody priblizhennogo preobrazovaniya Fure i obrascheniya preobrazovaniya Laplasa, Nauka, M., 1974
[18] V. I. Krylov, N. S. Skoblya, Spravochnaya kniga po chislennomu obrascheniyu preobrazovaniya Laplasa, Nauka i tekhnika, Minsk, 1968