Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_4_a9, author = {G. U. Urazboev and I. I. Baltaeva and I. D. Rakhimov}, title = {A generalized $(G'/G)$-expansion method for the loaded}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {139--147}, publisher = {mathdoc}, volume = {24}, number = {4}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a9/} }
TY - JOUR AU - G. U. Urazboev AU - I. I. Baltaeva AU - I. D. Rakhimov TI - A generalized $(G'/G)$-expansion method for the loaded JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 139 EP - 147 VL - 24 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a9/ LA - ru ID - SJIM_2021_24_4_a9 ER -
G. U. Urazboev; I. I. Baltaeva; I. D. Rakhimov. A generalized $(G'/G)$-expansion method for the loaded. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 139-147. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a9/
[1] N. A. Kudryashov, I. L. Chernyavskii, “Nonlinear waves in fluid flow through a viscoelastic tube”, Fluid Dynamics, 41:1 (2006), 49–62 | DOI | Zbl
[2] H. Demiray, “Variable coefficient modified KdV equation in fluid-filled elastic tubes with stenosis: Solitary waves”, Chaos Soliton Fract., 42:1 (2009), 358–364 | DOI | Zbl
[3] B. B. Kadomtsev, V. I. Karpman, “Nonlinear waves”, Sov. Phys. Usp., 14 (1971), 40–60 | DOI
[4] A. M. Nakhushev, “On nonlocal problems with shift and their connection with loaded equations”, Differents. Uravn., 21:1 (1985), 92–101 | Zbl
[5] J. R. Cannon, H. M. Yin, “On a class of nonlinear nonclassical parabolic problems”, J. Different. Equat., 79 (1989), 266–288 | DOI | Zbl
[6] J. M. Chadam, A. Peirce, H. M. Yin, “The blowup property of solutions to some diffusion equations with localized nonlinear reactions”, J. Math. Analys. Appl., 169:2 (1992), 313–328 | DOI | Zbl
[7] U. Baltaeva, P. J. Torres, “Analog of the Gellerstedt problem for a loaded equation of the third order”, Mathematical Methods in the Applied Sciences, 42 (2011), 3865–3876 | DOI
[8] R. Hirota, “Exact solution of the Korteweg de Vries equation for multiple collisions of solitons”, Phys. Rev. Lett., 27 (1971), 1192–1194 | DOI | Zbl
[9] G. U. Urazboev, I. I. Baltayeva, “On integration of the general loaded Korteweg de Vries equation with a self-consistent source”, Instruments and Systems: Monitoring, Control, and Diagnostics, 10 (2019), 7–9
[10] A. B. Khasanov, G. U. Urazboev, “On the sine-Gordon equation with a self-consistent source”, Mat. Trudy, 11:1 (2008), 153–166 | Zbl
[11] C. Rogers, W. F. Shadwick, Backlund Transformations, Acad. Press, N. Y., 1982 | Zbl
[12] M. Wadati, H. Shanuki, K. Konno, “Relationships among inverse method, Backlund transformation and an infinite number of conservative laws”, Prog. Theor. Phys., 53 (1975), 419–436 | DOI | Zbl
[13] V. A. Matveev, M. A. Salle, Darboux Transformation and Solitons, Springer-Verl., Berlin, 1991
[14] Z.-L. Li, “Constructing of new exact solutions to the GKdV-mKdV equation with any-order nonlinear terms by $(G'/G)$-expansion method”, Appl. Math. Comput., 217 (2010), 1398–1403 | Zbl
[15] E. M. E. Zayed, “The $(G'/G)$-expansion method and its applications to some nonlinear evolution equations in the mathematical physics”, J. Appl. Math. Comput., 30:1 (2009), 89–103 | DOI | Zbl
[16] E. M. Zayed, “The $(G'/G)$-expansion method combined with the Riccati equation for finding exact solutions of nonlinear PDEs”, J. Appl. Math. Inform., 29 (2011), 351–367 | Zbl
[17] E. M. Zayed, KA. Alurrfi, “Extended generalized $(G'/G)$-expansion method for solving the nonlinear quantum Zakharov–Kuznetsov equation”, Ricerche Mat., 65 (2016), 235–254 | DOI | Zbl
[18] N. Shang, B. Zheng, “Exact solutions for three fractional partial differential equations by the $(G'/G)$-expansion method”, Int. J. Appl. Math., 43 (2013), 3
[19] A. Bekir, O. Guner, “Exact solutions of nonlinear fractional differential equations by $(G'/G)$-expansion method”, Chin. Phys. B, 22:11 (2013), 110202 | DOI
[20] A. Bekir, “Application of the $(G'/G)$-expansion method for nonlinear evolution equations”, Phys. Lett. A, 372 (2008), 3400–3406 | DOI | Zbl
[21] S. Zhang, J. L. Tong, W. Wang, “A generalized $(G'/G)$-expansion method for the mKdV equation with variable coefficients”, Phys. Lett. A, 372 (2008), 2254–2257 | DOI | Zbl
[22] E. M. E. Zayed, K. A. Gepreel, “The $(G'/G)$ expansion method for finding traveling wave solutions of nonlinear partial differential equations in mathematical physics”, J. Math. Phys., 50:1 (2009), 12 | DOI
[23] M. Wang, X. Li, J. Zhang, “The $(G'/G)$-expansion method and travelling wave solutions of nonlinear evolution equations in mathematical physics”, Phys. Lett. A, 372 (2008), 417–423 | DOI | Zbl