On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 5-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an inverse kinematic problem of seismic (IKPS) with internal sources. It consists in determining the velocities of longitudinal and transverse waves by the travel times from earthquake sources, occurring in the focal zone, to a group of seismic stations. We propose an algorithm for the numerical solution to the problem, based on the eikonal equation and the technology of smoothing multidimensional splines, which give an approximation of the velocity structure of the focal zone. The paper presents theoretical results that substantiate the algorithm for solving the problem by approximation methods by smoothing with multidimensional splines from data on irregular grids. We describe the results of the numerical solution to the problem, the calculations with real data on earthquakes in the focal zone, and give the estimates of the velocity and elastic parameters of the medium.
Keywords: kinematic problem of seismic, internal sources, inverse problems, splines. .
Mots-clés : eikonal equation, interpolation, approximation
@article{SJIM_2021_24_4_a0,
     author = {Yu. E. Anikonov and V. V. Bogdanov and Yu. S. Volkov and E. Yu. Derevtsov},
     title = {On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--24},
     publisher = {mathdoc},
     volume = {24},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a0/}
}
TY  - JOUR
AU  - Yu. E. Anikonov
AU  - V. V. Bogdanov
AU  - Yu. S. Volkov
AU  - E. Yu. Derevtsov
TI  - On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 5
EP  - 24
VL  - 24
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a0/
LA  - ru
ID  - SJIM_2021_24_4_a0
ER  - 
%0 Journal Article
%A Yu. E. Anikonov
%A V. V. Bogdanov
%A Yu. S. Volkov
%A E. Yu. Derevtsov
%T On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 5-24
%V 24
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a0/
%G ru
%F SJIM_2021_24_4_a0
Yu. E. Anikonov; V. V. Bogdanov; Yu. S. Volkov; E. Yu. Derevtsov. On the determination of the velocity and elastic parameters of the focal zone medium from the earthquake hodographs. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 4, pp. 5-24. http://geodesic.mathdoc.fr/item/SJIM_2021_24_4_a0/

[1] G. Herglotz, “Uber das Benndorfsche Problem der Fortpflanzungsgeschwindigkeit der Erdbebenstrahlen”, Zeitschr. Geophys., 8 (1907), 145–147 | Zbl

[2] E. Wiechert, “Bestimmung des Weges der Erdbebenwelleh on Erdinnern. L. Theoretisches”, Phys. Zeitschr., 11 (1910), 294–304

[3] M. M. Lavrentev, V. G. Romanov, S. P. Shishatskii, Nekorrektnye zadachi matematicheskoi fiziki i analiza, Nauka, M., 1980

[4] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[5] S. V. Goldin, Geometricheskaya seismika, Izd-vo INGG SO RAN, Novosibirsk, 2017

[6] G. Nolet, Seismicheskaya tomografiya, Mir, M., 1990

[7] E. Delasan, D. Ruaie, Uprugie volny v tverdykh telakh, Nauka, M., 1982

[8] V. K. Andreev, Matematichesie modeli mekhaniki sploshnykh sred, Lan, SPb., 2015

[9] Yu. A. Kravtsov, Yu. I. Orlov, Geometricheskaya optika neodnorodnykh sred, Nauka, M., 1980

[10] N. V. Butenin, N. A. Fufaev, Vvedenie v analiticheskuyu mekhaniku, Nauka, M., 1991

[11] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Sovremennaya geometriya, Nauka, M., 1986

[12] M. L. Gerver, V. M. Markushevich, “Svoistva godografa ot poverkhnostnogo istochnika”, Nekotorye pryamye i obratnye zadachi seismologii, Vychislitelnaya seismologiya, 4, Nauka, M., 1968, 15–63

[13] V. M. Markushevich, “Kharakteristicheskie svoistva godografa ot glubinnogo istochnika”, Nekotorye pryamye i obratnye zadachi seismologii, Vychislitelnaya seismologiya, 4, Nauka, M., 1968, 64–77

[14] Yu. E. Anikonov, “Ob odnoi zadache opredeleniya rimanovoi metriki”, Dokl. AN SSSR, 204:6 (1972), 1287–1288 | Zbl

[15] Yu. E. Anikonov, Nekotorye metody issledovaniya mnogomernykh obratnykh zadach dlya differentsialnykh uravnenii, Nauka, Novosibirsk, 1978

[16] P. P. Belinskii, “O nepreryvnosti prostranstvennykh kvazikonformnykh otobrazhenii i teorema Liuvillya”, Dokl. AN SSSR, 147:5 (1962), 1003–1004 | Zbl

[17] Yu. G. Reshetnyak, “Ob ustoichivosti v teorii Liuvillya o konformnykh otobrazheniyakh prostranstva”, Dokl. AN SSSR, 152:2 (1963), 286–287 | Zbl

[18] A. V. Pogorelov, Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969

[19] Yu. E. Anikonov, N. B. Pivovarova, L. B. Slavina, “Trekhmernoe pole skorostei fokalnoi zony Kamchatki”, Matematicheskie problemy geofiziki, 5, no. 1, izd. VTs SO AN SSSR, Novosibirsk, 1974, 92–117

[20] A. V. Kabannik, Yu. A. Orlov, V. A. Cheverda, “Chislennoe reshenie zadachi lineinoi seismicheskoi tomografii na prokhodyaschikh volnakh: sluchai nepolnykh dannykh”, Sib. zhurn. industr. matematiki, 7:2 (18) (2004), 54–67 | Zbl

[21] H. Wendland, Scattered Data Approximation, Cambridge Univ. Press, Cambridge, 2005 | Zbl

[22] A. I. Rozhenko, Teoriya i algoritmy variatsionnoi splain-approksimatsii, izd. IVMiMG SO RAN, Novosibirsk, 2005

[23] M. I. Ignatov, A. B. Pevnyi, Naturalnye splainy mnogikh peremennykh, Nauka, L., 1991

[24] R. Schaback, “Native Hilbert Spaces for Radial Basis Functions. I”, New Developments in Approximation Theory, Birkhauser, Basel, 1999, 255–282 | DOI | Zbl

[25] A. I. Rozhenko, “Sravnenie radialnykh bazisnykh funktsii”, Sib. zhurn. vychisl. matematiki, 21:3 (2018), 273–292 | Zbl

[26] Yu. S. Volkov, V. L. Miroshnichenko, “Postroenie matematicheskoi modeli universalnoi kharakteristiki radialno-osevoi gidroturbiny”, Sib. zhurn. industr. matematiki, 1:1 (1998), 77–88 | Zbl

[27] Yu. E. Anikonov, V. V. Bogdanov, E. Yu. Derevtsov, V. L. Miroshnichenko, N. B. Pivovarova, L. B. Slavina, “Some approaches to a numerical solution for the multidimensional inverse kinematic problem of seismics with inner sources”, J. Inverse Ill-Posed Probl., 17:3 (2009), 209–238 | DOI | Zbl

[28] V. V. Bogdanov, W. V. Karsten, V. L. Miroshnichenko, Yu. S. Volkov, “Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey”, Central European J. Math., 11:4 (2013), 779–786 | Zbl

[29] A. I. Rozhenko, T. S. Shaidorov, “O postroenii splainov metodom vosproizvodyaschikh yader”, Sib. zhurn. vychisl. matematiki, 16:4 (2013), 365–376 | Zbl

[30] J. O. Aasen, “On the reduction of a symmetric matrix to tridiagonal form”, BIT, 11:3 (1971), 233–242 | DOI | Zbl