On the convergence of generalizations of the sinc approximations on the Privalov--Chanturia class
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 122-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a condition described in terms of the left- or right modulus of continuity and the negative or positive modulus of variation of a function $f$ respectively, which is sufficient for uniform approximation of $f$ by the values of the function interpolation operators constructed from the solutions of the Cauchy problem with a linear differential expression of the second order inside an interval. These operators are some generalization of the classical sinc approximations used in the Whittaker–Kotelnikov–Shannon Sampling Theorem. We also show that this condition is sufficient for uniform convergence over the entire segment of one modification of the function interpolation operator, which allows us to eliminate the Gibbs phenomenon near the ends of the segment.
Mots-clés : interpolation process, uniform convergence. .
Keywords: sinc approximation, function approximation
@article{SJIM_2021_24_3_a8,
     author = {A. Yu. Trynin},
     title = {On the convergence of generalizations of the sinc approximations on the {Privalov--Chanturia} class},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {122--137},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a8/}
}
TY  - JOUR
AU  - A. Yu. Trynin
TI  - On the convergence of generalizations of the sinc approximations on the Privalov--Chanturia class
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 122
EP  - 137
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a8/
LA  - ru
ID  - SJIM_2021_24_3_a8
ER  - 
%0 Journal Article
%A A. Yu. Trynin
%T On the convergence of generalizations of the sinc approximations on the Privalov--Chanturia class
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 122-137
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a8/
%G ru
%F SJIM_2021_24_3_a8
A. Yu. Trynin. On the convergence of generalizations of the sinc approximations on the Privalov--Chanturia class. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 122-137. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a8/

[1] Z. A. Chanturiya, “On the uniform convergence of Fourier series”, Sb. Math., 29:4 (1976), 475–495 | DOI | Zbl

[2] A. A. Privalov, “Uniform convergence of Lagrange interpolation processes”, Math. Notes, 39:2 (1986), 124–133 | DOI | Zbl

[3] A. A. Privalov, Theory of functions interpolation, Izd. Saratov. un-ta, Saratov, 1990 (in Russian)

[4] A. Yu. Trynin, “A generalization of the Whittaker-Kotel'nikov-Shannon sampling theorem for continuous functions on a closed interval”, Sb. Math., 200:11 (2009), 1633–1679 | DOI | Zbl

[5] A. Yu. Trynin, “Error estimate of the uniform approximation by Lagrange-Sturm-Liouville interpolation processes”, Problemy Mat. Analiza, 102 (2020), 165–180 (in Russian) | Zbl

[6] A. Yu. Trynin, “Sufficient condition for convergence of Lagrange-Sturm-Liouville processes in terms of one-sided modulus of continuity”, Comput. Math. and Math. Phys., 58:11 (2018), 1716–1727 | DOI | Zbl

[7] A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix $\mathcal{L}_n^{(\alpha_n,\beta_n)}$ of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249 | DOI | Zbl

[8] M. Richardson, L. Trefethen, “A sinc function analogue of Chebfun”, SIAM J. Sci. Comput., 33:5 (2011), 2519–2535 | DOI | Zbl

[9] F. Stenger, H. A. M. El-Sharkawy, G. Baumann, “The Lebesgue constant for sinc approximations”, Appl. Numer. Harmon. Anal., 2014, 319–335 | DOI | Zbl

[10] D. Costarelli, G. Vinti, A. Krivoshein, M. Skopina, “Quasi-projection operators with applications to differential-difference expansions”, Appl. Math. Comput., 363 (2019), 124623 | Zbl

[11] Y. Kolomoitsev, M. Skopina, “Around kotelnikov-shannon formula”, 12 Internat. Conf. on Sampling Theory and Applications (SampTA 2017), 2017, 279–282

[12] A. Krivoshein, M. Skopina, “Multivariate sampling-type approximation”, Anal. Appl., 15:4 (2017), 521–542 | DOI | Zbl

[13] Marwa M. Tharwat, “Sinc approximation of eigenvalues of Sturm-Liouville problems with a Gaussian multiplier”, Quarterly on Numerical Analysis and Theory of Computation, 51:3 (2014), 465–484

[14] Yu. S. Soliev, “On quadrature formulas with multiple nodes for singular integrals along the real axis with periodic densities”, Modern methods of theory of boundary value problems, Proc. Internat. Conf. “Spring Mathematical School in Voronezh. Pontryagin's Readings-XXXI”, Voronezh, 2020, 205

[15] Yu. S. Soliev, “On Sinc-Approximation of Singular Hilbert Integrals”, Modern methods of function theory and allied problems, Proc. Internat. Conf. “Winter Mathematical School in Voronezh” (Voronezh, 2019), 241–242

[16] B. Bede, L. Coroianu, S. G. Gal, “Introduction and Preliminaries”, Approximation by Max-Product Type Operators, 2016, 1–24

[17] A. D. Kryzhanovskii, A. A. Pastushkov, “Nonparametric technique for the probability density recovering by observations of a random quantity”, Ross. Tekhnolog. Zh., 6:3 (23) (2018), 31–38

[18] Coroianu L., Sorin G. Gal, “Localization results for the non-truncated max-product sampling operators based on Fejer and sinc-type kernels”, Demonstratio Math., 49:1 (2016), 38–49 | Zbl

[19] E. Livne Oren, E. Brandt Achi, “MuST: The multilevel sinc transform”, SIAM J. Sci. Comput., 33:4 (2011), 1726–1738 | DOI | Zbl

[20] M. Tharwat, “Sinc approximation of eigenvalues of Sturm-Liouville problems with a Gaussian multiplier”, Calcolo, 51:09 (2014), 465–484 | DOI | Zbl

[21] I. Ya. Novikov, S. B. Stechkin, “Basics of splash theory”, Uspekhi Mat. Nauk, 53:6(324) (1998), 53–128 (in Russian) | Zbl

[22] I. Dobeshi, Ten Lectures on Wavelets, SIAM, Philadelphia, 1992

[23] A. I. Shmukler, T. A. Shul'man, “Some properties of Kotel'nikov series”, Izv. VUZ-ov. Ser. Mat., 1974, no. 3, 93–103 (in Russian)

[24] V. P. Sklyarov, “On the best uniform sinc-approximation on a finite interval”, East J. Approx., 14:2 (2008), 183–192 | Zbl

[25] A. Ya. Umakhanov, I. I. Sharapudinov, “Interpolation of functions by whittaker sums and their modifications: conditions for uniform convergence”, Vladikavkaz. Mat. Zh., 18:4 (2016), 61–70 (in Russian) | Zbl

[26] A. Yu. Trynin, “On necessary and sufficient conditions for the convergence of sinc approximations”, Algebra i Analiz, 27:5 (2015), 170–194 (in Russian)

[27] A. Yu. Trynin, “One functional class of uniform convergence on a segment of truncated whittaker cardinal functions”, Internat. J. Math. Syst. Sci., 1:3 (2018), 1–9 | DOI

[28] A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russ. Math., 2016, no. 3, 63–71 | DOI | Zbl

[29] B. I. Golubov, “Spherical jump of a function and the Bochner-Riesz means of conjugate multiple Fourier series and Fourier integrals”, Math. Notes, 91:4 (2012), 479–486 | DOI | Zbl

[30] B. I. Golubov, “Dyadic distributions”, Sb. Math., 198:2 (2007), 207–230 | DOI | Zbl

[31] M. I. D'yachenko, A. B. Mukanov, S. Yu. Tikhonov, “Smoothness of Functions and Fourier coefficients”, Sb. Math., 210:7 (2019), 994–1018 | DOI | Zbl

[32] D. G. Dzhumabaeva, M. I. D'yachenko, E. D. Nursultanov, “On convergence of multiple trigonometric series with monotone coefficients”, Siberian Math. J., 58:2 (2017), 205–214 | DOI | Zbl

[33] A. V. Krivoshein, M. A. Skopina, “Construction of multivariate frames using the polyphase method”, Math. Notes, 100:3 (2016), 495–498 | DOI | Zbl

[34] I. Ya. Novikov, M. A. Skopina, Why are haar bases in various structures the same?, Math. Notes, 91:6 (2012), 895–898 | DOI | Zbl

[35] K. Mochizuki, I. Yu. Trooshin, “Evolution equations of hyperbolic and Schrödinger type. Asymptotics, estimates and nonlinearities”, Internat. Workshop “Asymptotic properties of solutions to hyperbolic equations” (London, 2012), 227–245 | Zbl

[36] D. I. Borisov, M. Znoiil, “On eigenvalues of a PTsymmetric operator in a thin layer”, Sb. Math., 208:2 (2017), 173–199 | DOI | Zbl

[37] A. Yu. Trynin, “Asymptotic behavior of the solutions and nodal points of Sturm-Liouville differential expressions”, Siberian Math. J., 51:3 (2010), 525–536 | DOI | Zbl

[38] I. A. Shakirov, “Some two-sided estimate of the norm of a Fourier operator”, Ufim. Mat. Zh., 10:1 (2018), 96–117 (in Russian) | Zbl

[39] A. D. Baranov, “Spectral theory of rank one perturbations of normal compact operators”, Algebra and Analiz, 30:5 (2018), 1–56

[40] Yu. A. Farkov, “On the best linear approximation of holomorphic functions”, Fundam. Prikl. Mat., 19:5 (2014), 185–212