On stucture of phase portrait of one 5-dimensional gene network model
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 19-29.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain conditions of uniqueness of a cycle in phase portrait of one piecewise linear dynamical system which simulates functioning of a circular gene network with five components regulated by neagtive feedbacks only. We describe behavior of trajectories of this system in its invariant toric domain, and show stability of that cycle.
Keywords: circular gene network model, negative feedbacks, piecewise-linear dynamical systems, Poincaré mapping, monotonicity, fixed point, stability. .
Mots-clés : phase portrait, invariant domains, cycles
@article{SJIM_2021_24_3_a1,
     author = {N. B. Ayupova and V. P. Golubyatnikov},
     title = {On stucture of phase portrait  of one 5-dimensional gene network model},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {24},
     number = {3},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/}
}
TY  - JOUR
AU  - N. B. Ayupova
AU  - V. P. Golubyatnikov
TI  - On stucture of phase portrait  of one 5-dimensional gene network model
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 19
EP  - 29
VL  - 24
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/
LA  - ru
ID  - SJIM_2021_24_3_a1
ER  - 
%0 Journal Article
%A N. B. Ayupova
%A V. P. Golubyatnikov
%T On stucture of phase portrait  of one 5-dimensional gene network model
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 19-29
%V 24
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/
%G ru
%F SJIM_2021_24_3_a1
N. B. Ayupova; V. P. Golubyatnikov. On stucture of phase portrait  of one 5-dimensional gene network model. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 19-29. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/

[1] V. P. Golubyatnikov, V. V. Ivanov, “Cycles in the odd-dimensional models of circular gene networks”, J. Appl. Ind. Math., 12:4 (2018), 648–657 | DOI | DOI | Zbl

[2] I. Zoran, A. R. López, A. Malyshava, T. Ellis, M. Barberis, “Synthetic designs regulating celluler transitions: Fine-tuning of switches and oscillators”, Current Opinion in Systems Biology, 25 (2021), 11–26 | DOI

[3] M. C. Mackey, L. Glass, “Oscillations and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI | Zbl

[4] E. P. Volokitin, “O predel'nykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. Zhurn. Indust. Matematiki, 7:3 (2004), 57–65 (in Russian) | Zbl

[5] V. P. Golubyatnikov, I. V. Golubyatnikov, V. A. Likhoshvai, “On the existence and stability of cycles in five-dimensional models of gene networks”, Numer. Analys. Appl., 3:4 (2010), 329–335 | DOI | Zbl

[6] V. P. Golubyatnikov, V. S. Gradov, “Non-uniqueness of cycles in piecewise-linear models of circular gene networks”, Sib. Adv. Math., 31:1 (2021), 1–12 | DOI | DOI

[7] V. P. Golubyatnikov, V. V. Ivanov, L. S. Minushkina, “O sushchestvovanii tsikla v odnoi nesimmetrichnoi modeli kol'tsevoi gennoi seti”, Sib. Zhurn. Chistoi i Prikl. Matematiki, 18:3 (2018), 26–32 (in Russian) | DOI

[8] A. A. Akin'shin, “Bifurkatsiya Andronova Khopfa dlya nekotorykh nelineinykh uravnenii s zapazdyvaniem”, Sib. Zhurn. Industr. Matematiki, 16:3 (2013), 3–15 (in Russian) | Zbl

[9] A. A. Akin'shin, V. P. Golubyatnikov, I. V. Golubyatnikov, “On some multidimensional models of gene network functioning”, J. Appl. Ind. Math., 7:3 (2013), 296–301 | DOI | Zbl

[10] V. P. Golubyatnikov, L. S. Minushkina, “Combinatorics and geometry of circular gene networks models”, Pis-ma v Vavilovskii Zhurn. Genetiki i Selektsii, 6:4 (2020), 188–192 | DOI

[11] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “The global operation modes of gene networks determined by the structure of negative feedbacks”, Bioinformatics of Genome Regulation and Structure, Kluwer Acad. Press, Boston, 2004, 319–329 | DOI

[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Quasi-stable structures in circular gene networks”, Comput. Math. and Math. Phys., 58:5 (2018), 659–679 | DOI | DOI | Zbl

[13] J. Llibre, M. A. Texeira, Piecewise linear differential systems with only centers can create limit cycles?, Nonlinear Dynam., 91:1 (2018), 249–255 | DOI | Zbl

[14] Yu. A. Gaidov, V. P. Golubyatnikov, A. G. Kleshchev, E. P. Volokitin, “Modeling of asymmetric gene networks functioning with different types of regulation”, Biophysics, 51, Suppl. 1 (2006), 61–65 | DOI

[15] Yu. A. Gaidov, V. P. Golubyatnikov, “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyushchikh nesimmetrichnye gennye seti”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 7:2 (2007), 8–17 (in Russian)

[16] M. V. Kazantsev, “O nekotorykh svoistvakh grafov domenov dinamicheskikh sistem”, Sib. zhurn. industr. matematiki, 18:4 (2015), 42–49 (in Russian) | DOI

[17] N. B. Ayupova, V. P. Golubyatnikov, V. S. Gradov, L. S. Minushkina, “Phase portraits of gene networks models”, Proc. 12 Internat. Conf. Bioinformatics of genome regulation and structure/Systems biology, BGRS/SB-2020, Institute of Cytology and Genetics SB RAS, Novosibirsk, 2020, 140

[18] V. P. Golubyatnikov, V. V. Ivanov, “Edinstvennost' i ustoichivost' tsikla v trekhmernykh blochno-lineinykh modelyakh kol'tsevykh gennykh setei”, Sib. zhurn. chistoi i prikl. matematiki, 18:4 (2018), 19–28 (in Russian) | DOI | Zbl

[19] Yu. A. Gaidov, “On the stability of periodic trajectories in some gene network models”, J. Appl. Ind. Math., 4:1 (2010), 43–47 | DOI | Zbl

[20] N. V. Kuznetsov, V. Reitmann, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation, Emergence, Complexity and Computation ECC, Springer Internat. Publ., 2021 | DOI | Zbl

[21] V. P. Golubyatnikov, L. S. Minushkina, “On geometric structure of phase portraits of some piecewise linear dynamical systems”, Tbilisi Math. J., 7, Special Issue (2021), 49–56 | DOI

[22] D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, A. Prasad, “Hidden attractors in dynamical systems”, Phys. Rep., 637 (2016), 1–50 | DOI | Zbl