Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_3_a1, author = {N. B. Ayupova and V. P. Golubyatnikov}, title = {On stucture of phase portrait of one 5-dimensional gene network model}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {19--29}, publisher = {mathdoc}, volume = {24}, number = {3}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/} }
TY - JOUR AU - N. B. Ayupova AU - V. P. Golubyatnikov TI - On stucture of phase portrait of one 5-dimensional gene network model JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 19 EP - 29 VL - 24 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/ LA - ru ID - SJIM_2021_24_3_a1 ER -
N. B. Ayupova; V. P. Golubyatnikov. On stucture of phase portrait of one 5-dimensional gene network model. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 3, pp. 19-29. http://geodesic.mathdoc.fr/item/SJIM_2021_24_3_a1/
[1] V. P. Golubyatnikov, V. V. Ivanov, “Cycles in the odd-dimensional models of circular gene networks”, J. Appl. Ind. Math., 12:4 (2018), 648–657 | DOI | DOI | Zbl
[2] I. Zoran, A. R. López, A. Malyshava, T. Ellis, M. Barberis, “Synthetic designs regulating celluler transitions: Fine-tuning of switches and oscillators”, Current Opinion in Systems Biology, 25 (2021), 11–26 | DOI
[3] M. C. Mackey, L. Glass, “Oscillations and chaos in physiological control systems”, Science, 197:4300 (1977), 287–289 | DOI | Zbl
[4] E. P. Volokitin, “O predel'nykh tsiklakh v prosteishei modeli gipoteticheskoi gennoi seti”, Sib. Zhurn. Indust. Matematiki, 7:3 (2004), 57–65 (in Russian) | Zbl
[5] V. P. Golubyatnikov, I. V. Golubyatnikov, V. A. Likhoshvai, “On the existence and stability of cycles in five-dimensional models of gene networks”, Numer. Analys. Appl., 3:4 (2010), 329–335 | DOI | Zbl
[6] V. P. Golubyatnikov, V. S. Gradov, “Non-uniqueness of cycles in piecewise-linear models of circular gene networks”, Sib. Adv. Math., 31:1 (2021), 1–12 | DOI | DOI
[7] V. P. Golubyatnikov, V. V. Ivanov, L. S. Minushkina, “O sushchestvovanii tsikla v odnoi nesimmetrichnoi modeli kol'tsevoi gennoi seti”, Sib. Zhurn. Chistoi i Prikl. Matematiki, 18:3 (2018), 26–32 (in Russian) | DOI
[8] A. A. Akin'shin, “Bifurkatsiya Andronova Khopfa dlya nekotorykh nelineinykh uravnenii s zapazdyvaniem”, Sib. Zhurn. Industr. Matematiki, 16:3 (2013), 3–15 (in Russian) | Zbl
[9] A. A. Akin'shin, V. P. Golubyatnikov, I. V. Golubyatnikov, “On some multidimensional models of gene network functioning”, J. Appl. Ind. Math., 7:3 (2013), 296–301 | DOI | Zbl
[10] V. P. Golubyatnikov, L. S. Minushkina, “Combinatorics and geometry of circular gene networks models”, Pis-ma v Vavilovskii Zhurn. Genetiki i Selektsii, 6:4 (2020), 188–192 | DOI
[11] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “The global operation modes of gene networks determined by the structure of negative feedbacks”, Bioinformatics of Genome Regulation and Structure, Kluwer Acad. Press, Boston, 2004, 319–329 | DOI
[12] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Quasi-stable structures in circular gene networks”, Comput. Math. and Math. Phys., 58:5 (2018), 659–679 | DOI | DOI | Zbl
[13] J. Llibre, M. A. Texeira, Piecewise linear differential systems with only centers can create limit cycles?, Nonlinear Dynam., 91:1 (2018), 249–255 | DOI | Zbl
[14] Yu. A. Gaidov, V. P. Golubyatnikov, A. G. Kleshchev, E. P. Volokitin, “Modeling of asymmetric gene networks functioning with different types of regulation”, Biophysics, 51, Suppl. 1 (2006), 61–65 | DOI
[15] Yu. A. Gaidov, V. P. Golubyatnikov, “O nekotorykh nelineinykh dinamicheskikh sistemakh, modeliruyushchikh nesimmetrichnye gennye seti”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 7:2 (2007), 8–17 (in Russian)
[16] M. V. Kazantsev, “O nekotorykh svoistvakh grafov domenov dinamicheskikh sistem”, Sib. zhurn. industr. matematiki, 18:4 (2015), 42–49 (in Russian) | DOI
[17] N. B. Ayupova, V. P. Golubyatnikov, V. S. Gradov, L. S. Minushkina, “Phase portraits of gene networks models”, Proc. 12 Internat. Conf. Bioinformatics of genome regulation and structure/Systems biology, BGRS/SB-2020, Institute of Cytology and Genetics SB RAS, Novosibirsk, 2020, 140
[18] V. P. Golubyatnikov, V. V. Ivanov, “Edinstvennost' i ustoichivost' tsikla v trekhmernykh blochno-lineinykh modelyakh kol'tsevykh gennykh setei”, Sib. zhurn. chistoi i prikl. matematiki, 18:4 (2018), 19–28 (in Russian) | DOI | Zbl
[19] Yu. A. Gaidov, “On the stability of periodic trajectories in some gene network models”, J. Appl. Ind. Math., 4:1 (2010), 43–47 | DOI | Zbl
[20] N. V. Kuznetsov, V. Reitmann, Attractor Dimension Estimates for Dynamical Systems: Theory and Computation, Emergence, Complexity and Computation ECC, Springer Internat. Publ., 2021 | DOI | Zbl
[21] V. P. Golubyatnikov, L. S. Minushkina, “On geometric structure of phase portraits of some piecewise linear dynamical systems”, Tbilisi Math. J., 7, Special Issue (2021), 49–56 | DOI
[22] D. Dudkowski, S. Jafari, T. Kapitaniak, N. V. Kuznetsov, G. A. Leonov, A. Prasad, “Hidden attractors in dynamical systems”, Phys. Rep., 637 (2016), 1–50 | DOI | Zbl