Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a8, author = {M. V. Neshchadim}, title = {B\"{a}cklund transformations for the one-dimensional {Schr\"{o}dinger} equation}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {116--125}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a8/} }
TY - JOUR AU - M. V. Neshchadim TI - B\"{a}cklund transformations for the one-dimensional Schr\"{o}dinger equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 116 EP - 125 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a8/ LA - ru ID - SJIM_2021_24_2_a8 ER -
M. V. Neshchadim. B\"{a}cklund transformations for the one-dimensional Schr\"{o}dinger equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 116-125. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a8/
[1] L. V. Ovsyannikov, Group Analysis of Differential Equations, Academic Press, N.Y., 1982 | MR | Zbl
[2] N. Kh. Ibragimov, Transformation Groups Applied to Mathematical Physics, Reidel Publ. Company, Dordrecht–Boston–Lancaster, 1985 | MR | MR | Zbl
[3] P. Olver, Applications of Lie Groups to Differential Equations, Springer-Verl, N.Y., 1986 | MR | Zbl
[4] A. M. Vinogradov, Symmetries and conservation laws for differential equations of mathematical physics, Faktorial, M., 1997 (in Russian)
[5] A. F. Sidorov, V. P. Shapeev, N. N. Yanenko, Method of differential constraints and its applications in gas dynamics, Nauka, Novosibirsk, 1984 (in Russian)
[6] N. Kh. Ibragimov, A. B. Shabat, “Evolutionary equations with a nontrivial Lie-Bäcklund group”, Function. Anal. and Its Appl., 14:1 (1980), 25–36 | MR | Zbl
[7] N. Kh. Ibragimov, A. B. Shabat, “Infinite Lie-Bäcklund Algebras”, Function. Anal. and Its Appl., 14:4 (1980), 79–80 (in Russian) | MR | Zbl
[8] A. M. Vinogradov, I. S. Krasilshchik, V. V. Lychagin, Introduction to the geometry of nonlinear differential equations, Nauka, M., 1983 (in Russian)
[9] A. M. Vinogradov, Cohomological Analysis of Partial Differential Equations and Secondary Calculus, Amer. Math. Soc., Providence, 2021 | MR
[10] R. M. Miura, Backlund Transformations, Lect. Notes Math., 515, Springer-Verl., Heidelberg, 1976 | DOI | MR | Zbl
[11] V. V. Zharinov, “On Bäcklund Correspondences”, Math. USSR-Sb, 64:1 (1989), 277–293 | DOI | MR | Zbl
[12] V. V. Zharinov, “Bäcklund correspondences for evolution equations in a multidimensional space”, Theor. Math. Phys., 147:1 (2006), 449–459 | DOI | MR | Zbl
[13] Yu. E. Anikonov, M. V. Neshchadim, “Generalized Cole-Hopf transformation”, J. Appl. Ind. Math., 21:3 (2018), 409–416 | DOI | MR | Zbl
[14] Yu. E. Anikonov, M. V. Neshchadim, “The method of differential constraints and nonlinear inverse problems”, J. Appl. Ind. Math., 9:3 (2015), 317–327 | DOI | MR | Zbl
[15] M. J. Ablovits, Kh. Sigur, Solitons and the Inverse Scattering Transform, SIAM, Philadelphia, 1987 | MR
[16] O. V. Kaptsov, Integration methods for partial differential equations, Fizmatlit, M., 2009 (in Russian)
[17] T. Miva, M. Dzhimbo, E. Date, Solitons: Differential Equations, Symmetries and Infinite Dimensional Algebras, Jwanami Shoten, Tokyo, 1993
[18] D. I. Blokhintsev, Fundamentals of quantum mechanics, Nauka, M., 1976 (in Russian)
[19] S. P. Finikov, Cartan's method of exterior forms, Gostekhizdat, M.–L,, 1948 (in Russian)
[20] Zh. Pommare, Systems of partial differential equations and Lie pseudogroups, 1983, Mir, M. (in Russian)
[21] M. V. Neshchadim, A. P. Chupakhin, “Partially invariant solutions to the cubic Schrödinger equation”, Vestnik Udmurt. Univ., 2008, no. 3, 35–41 (in Russian)