Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2021_24_2_a11, author = {T. Yskak}, title = {On estimates of solutions to systems of nonlinear differential equations with distributed delay and periodic coefficients in the linear terms}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {148--159}, publisher = {mathdoc}, volume = {24}, number = {2}, year = {2021}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a11/} }
TY - JOUR AU - T. Yskak TI - On estimates of solutions to systems of nonlinear differential equations with distributed delay and periodic coefficients in the linear terms JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2021 SP - 148 EP - 159 VL - 24 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a11/ LA - ru ID - SJIM_2021_24_2_a11 ER -
%0 Journal Article %A T. Yskak %T On estimates of solutions to systems of nonlinear differential equations with distributed delay and periodic coefficients in the linear terms %J Sibirskij žurnal industrialʹnoj matematiki %D 2021 %P 148-159 %V 24 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a11/ %G ru %F SJIM_2021_24_2_a11
T. Yskak. On estimates of solutions to systems of nonlinear differential equations with distributed delay and periodic coefficients in the linear terms. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 2, pp. 148-159. http://geodesic.mathdoc.fr/item/SJIM_2021_24_2_a11/
[1] A. D. Myshkis, Linear Differential Equations with Retarded Argument, Nauka, M., 1972 | MR
[2] N. N. Krasovskii, Stability of Motion. Applications of Lyapunov's Second Method to Differential Systems and Equations with Delay, Stanford Univ. Press, Stanford, 1963 | MR
[3] L. E. El'sgol'ts, S. B. Norkin, Introduction to the Theory and Application of Differential Equations with Deviating Arguments, Acad. Press, N.Y., 1973 | MR
[4] J. Hale, Theory of Functional Differential Equations, Springer-Verl, N.Y., 1977 | MR | Zbl
[5] D. G. Korenevskiĭ, Stability of Dynamical Systems under Random Perturbations of Parameters. Algebraic Criteria, Naukova Dumka, Kiev, 1989 (in Russian)
[6] N. V. Azbelev, V. P. Maksimov, L. F. Rakhmatullina, Introduction to the Theory of Linear Functional Differential Equations, World Federation Publ. Comp., Atlanta, 1995 | MR | MR | Zbl
[7] Yu. F. Dolgiĭ, Stability of periodic differential-difference equations, Izd. Ural. Gos. Univ., Ekaterinburg, 1996 (in Russian)
[8] V. B. Kolmanovskiĭ, A. D. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Math. Appl., 463, Kluwer Acad. Publ, Dordrecht, 1999 | MR | Zbl
[9] K. Gu, V. L. Kharitonov, J. Chen, Stability of Time-Delay Systems. Control Engineering, Birkhauser, Boston, 2003 | MR
[10] R. P. Agarwal, L. Berezansky, E. Braverman, A. Domoshnitsky, Nonoscillation Theory of Functional Differential Equations with Applications, Springer-Verl, N.Y., 2012 | MR | Zbl
[11] M. I. Gil', Stability of Neutral Functional Differential Equations, Atlantis Stud. Differ. Equ., 3, Atlantis Press, Paris, 2014 | DOI | MR | Zbl
[12] G. V. Demidenko, I. I. Matveeva, “Asymptotic properties of solutions to delay differential equations”, Vestn. NGU. Ser. Matematika, Mekhanika, Informatika, 5:3 (2005), 20–28 (in Russian) | Zbl
[13] G. V. Demidenko, I. I. Matveeva, “Stability of solutions to delay differential equations with periodic coefficients of linear terms”, Siberian Math. J., 48:5 (2007), 824–836 | DOI | MR | Zbl
[14] G. V. Demidenko, “Stability of solutions to linear differential equations of neutral type”, J. Anal. Appl., 7:3 (2009), 119–130 | MR | Zbl
[15] I. I. Matveeva, “Estimates for solutions to one class of nonlinear delay differential equations”, J. Appl. Industr. Math., 7:4 (2013), 557–566 | DOI | MR | Zbl
[16] G. V. Demidenko, I. I. Matveeva, “On estimates of solutions to systems of differential equations of neutral type with periodic coefficients”, Siberian Math. J., 55:5 (2014), 866–881 | DOI | MR | Zbl
[17] G. V. Demidenko, I. I. Matveeva, “Estimates for solutions to a class of time-delay systems of neutral type with periodic coefficients and several delays”, Electron. J. Qual. Theory Differ. Equ., 2015:83 (2015), 1–22 | DOI | MR
[18] G. V. Demidenko, I. I. Matveeva, “Exponential stability of solutions to nonlinear time-delay systems of neutral type”, Electron. J. Diff. Equ., 2016:19 (2016), 1–20 | MR
[19] I. I. Matveeva, “On exponential stability of solutions to periodic neutral-type systems”, Siberian Math. J., 58:2 (2017), 264–270 | DOI | DOI | MR | Zbl
[20] G. V. Demidenko, I. I. Matveeva, M. A. Skvortsova, “Estimates for solutions to neutral differential equations with periodic coefficients of linear terms”, Siberian Math. J., 60:5 (2019), 828–841 | DOI | DOI | MR | Zbl
[21] I. I. Matveeva, “Exponential stability of solutions to nonlinear time-varying delay systems of neutral type equations with periodic coefficients”, Electron. J. Diff. Equ., 2020:20 (2020), 1–12 | MR
[22] I. I. Matveeva, “Estimates for exponential decay of solutions to one class of nonlinear systems of neutral type with periodic coefficients”, Comput. Math. Math. Phys, 60:4 (2020), 601–609 | DOI | DOI | MR | Zbl
[23] T. Yskak, “Stability of solutions to systems of differential equations with distributed delay”, Funct. Differ. Equ., 25:1-2 (2018), 97–108 | MR | Zbl
[24] G. V. Demidenko, I. I. Matveeva, “On stability of solutions to linear systems with periodic coefficients”, Siberian Math. J., 42:2 (2001), 282–296 | DOI | MR | Zbl