About elastic torsion around three axes
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 120-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equations of nonlinear elasticity assuming that the components of the deformation vector depend only on the two space coordinates each of which has the two corresponding coordinates. Some system of the three differential equations for three tangent components of the stress tensor is obtained in result of this study. This system can be used to describe the elastic torsion of a parallelepiped around the three orthogonal axes. We show that the solution of this problem, in stresses, depends on the three arbitrary functions each of which depends only on the two space variables.
Keywords: theory of nonlinear elasticity
Mots-clés : torsion, exact solution. .
@article{SJIM_2021_24_1_a8,
     author = {S. I. Senashov and I. L. Savostyanova},
     title = {About elastic torsion around three axes},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {120--125},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a8/}
}
TY  - JOUR
AU  - S. I. Senashov
AU  - I. L. Savostyanova
TI  - About elastic torsion around three axes
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 120
EP  - 125
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a8/
LA  - ru
ID  - SJIM_2021_24_1_a8
ER  - 
%0 Journal Article
%A S. I. Senashov
%A I. L. Savostyanova
%T About elastic torsion around three axes
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 120-125
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a8/
%G ru
%F SJIM_2021_24_1_a8
S. I. Senashov; I. L. Savostyanova. About elastic torsion around three axes. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 120-125. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a8/

[1] B. D. Annin, V. O. Bytev, S. I. Senashov, Group properties of the equations of elasticity and plasticity, Nauka, Novosibirsk, 1985 (in Russian) | MR

[2] V. Novatskii, Theory of elasticity, Mir, M., 1975 (in Russian)

[3] S. I. Senashov, O. V. Gomonova, A. N. Yakhno, Mathematical issues of two-dimensional equations of elasticity, Izd. Sibir. Gos. Aerokosm. Univ., Krasnoyarsk, 2012 (in Russian)