Method of commutators for integration of a matrix Riccati equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 78-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

Complete integration is carried out of the matrix Riccati equation arising in continuum mechanics in the two-dimensional case. The method of commutators is used to obtain some compatibility conditions.
Mots-clés : a matrix Riccati equation
Keywords: commutator of differential operators. .
@article{SJIM_2021_24_1_a5,
     author = {M. V. Neshchadim and A. P. Chupakhin},
     title = {Method of commutators for integration of a matrix {Riccati} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {78--88},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a5/}
}
TY  - JOUR
AU  - M. V. Neshchadim
AU  - A. P. Chupakhin
TI  - Method of commutators for integration of a matrix Riccati equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 78
EP  - 88
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a5/
LA  - ru
ID  - SJIM_2021_24_1_a5
ER  - 
%0 Journal Article
%A M. V. Neshchadim
%A A. P. Chupakhin
%T Method of commutators for integration of a matrix Riccati equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 78-88
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a5/
%G ru
%F SJIM_2021_24_1_a5
M. V. Neshchadim; A. P. Chupakhin. Method of commutators for integration of a matrix Riccati equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 78-88. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a5/

[1] M. V. Neshchadim, A. P. Chupakhin, “On Integration of a matrix Riccati equation”, J. Appl. Ind. Math., 14:4 (2020), 732–742 | DOI | MR

[2] M. I. Zelikin, Homogeneous spaces and the Riccati equation in the calculus of variations, Faktorial, M., 1998

[3] F. A. Chernous-ko, V. B. Kolmanovskii, Optimal control under random perturbations, Nauka, M., 1978

[4] L. V. Ovsyannikov, Lectures on the Fundamentals of Gas Dynamics, Inst. Kompyuternykh Issledovanii, M.–Izhevsk, 2003 | MR

[5] A. G. Fat'yanov, “Some semianalytical method for solution of the direct dynamical problems in stratified media”, Dokl. Akad. Nauk SSSR, 310:2 (1990), 323–327 | MR

[6] A. L. Karchevsky, “Analytical solution of the maxwell equations in the frequency domain for horizontal layered anisotropic media”, Geologiya i Geofizika, 48:8 (2007), 889–898

[7] A. L. Karchevsky, B. R. Rysbayuly, “Analitical expressions for a solution of convective heat and moisture transfer equations in the frequency domain for layered media”, Euras. J. Math. Comp. Appl., 3:4 (2015), 55–67

[8] A. L. Karchevsky, “Analytical solutions of the differential equation of transverse vibrations of a piecewise homogeneous beam in the frequency domain for the boundary conditions of various types”, J. Appl. Ind. Math., 14:4 (2020), 648–665 | DOI | MR

[9] E. Miller, “A regularity criterion for the Navier-Stokes equation involving only the middle eigenvalue of the strain tensor”, Arch. Rational Mech. Anal., 235 (2020), 99–139 | DOI | MR | Zbl

[10] S. C. Anco, G. M. Webb, “Hierarchies of new invariants and conserved integrals in inviscid fluid flow”, Phys. Fluids, 32 (2020), 086104 | DOI

[11] Pommare Zh., Systems of Partial Differential Equations and Lie Pseudogroup, Routledge, 1978 | MR

[12] A. F. Sidorov, V. P. Shapeev, N. N. Yanenko, Method of differential constraints and applications in gas dynamics, Nauka, Novosibirsk, 1984

[13] S. P. Finikov, Cartan's Method of Exterior Forms, Gostekhizdat, M., 1948

[14] A. P. Chupakhin, Barochronous gas motions: general properties and submodels of types (1, 2) and (1, 1), Preprint No 4-98, Lavrentyev Institute of Hydrodynamics SO RAN, Novosibirsk, 1998