Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 32-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the equations of a multivelocity model of a binary mixture of viscous compressible fluids (the two-fluid medium) in the case of one-dimensional barotropic motions. We prove the time global existence and uniqueness of a strong solution to the initial-boundary value problem describing the motion in a bounded space domain.
Mots-clés : viscous compressible fluid, global existence
Keywords: binary mixture, multivelocity multifluid, initial-boundary value problem, uniqueness, strong solution. .
@article{SJIM_2021_24_1_a2,
     author = {A. E. Mamontov and D. A. Prokudin},
     title = {Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {32--47},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a2/}
}
TY  - JOUR
AU  - A. E. Mamontov
AU  - D. A. Prokudin
TI  - Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 32
EP  - 47
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a2/
LA  - ru
ID  - SJIM_2021_24_1_a2
ER  - 
%0 Journal Article
%A A. E. Mamontov
%A D. A. Prokudin
%T Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 32-47
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a2/
%G ru
%F SJIM_2021_24_1_a2
A. E. Mamontov; D. A. Prokudin. Global unique solvability of an initial-boundary value problem for the one-dimensional barotropic equations of binary mixtures of viscous compressible fluids. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 32-47. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a2/

[1] I. Muller, “A thermodynamic theory of mixtures of fluids”, Arch. Rat. Mech. Anal., 28:1 (1968), 1–39 | DOI | MR | Zbl

[2] R. J. Atkin, R. E. Craine, “Continuum theories of mixtures: applications”, J. Appl. Math., 17:2 (1976), 153–207 | MR | Zbl

[3] K. L. Rajagopal, L. Tao, Mechanics of Mixtures, World Scientific, River Edge, 1995 | MR | Zbl

[4] R. I. Nigmatulin, Dynamics of Multiphase Media, v. 1, Nauka, M., 1997 (in Russian)

[5] A. E. Mamontov, D. A. Prokudin, “Viscous compressible multi-fluids: modeling and multi-D existence”, Meth. Appl. Anal., 20:2 (2013), 179–195 | MR

[6] A. E. Mamontov, D. A. Prokudin, “Viscous compressible homogeneous multi-fluids with multiple velocities: barotropic existence theory”, Sibir. Elektron. Mat. Izv., 14 (2017), 388–397 | MR | Zbl

[7] V. N. Dorovskii, Yu. V. Perepechko, “Partial melting theory”, Geology and Geophysics, 1989, no. 9, 56–64

[8] V. N. Dorovskii, Yu. V. Perepechko, “Phenomenological description of two-velocity media with relaxing shear stresses”, Prikl. Mekh. Tekhn. Fiz., 1992, no. 3, 97–104 (in Russian)

[9] A. M. Blokhin, V. N. Dorovskii, Problems of Mathematical Modeling in the Theory of a Multivelocity Continuum, Izd. Inst. Geolog. Geofiz. Mineralog., Inst. Mat., Novosibirsk, 1994 (in Russian)

[10] S. L. Gavrilyuk, Yu. V. Perepechko, “A Variational Approach to Constructing Hyperbolic Models of Two-Velocity Media”, Prikl. Mekh. Tekhn. Fiz., 1998, no. 5, 39–54 (in Russian) | Zbl

[11] A. E. Mamontov, D. A. Prokudin, “Modeling viscous compressible barotropic multi-fluid flows”, J. Physics: Conf. Ser., 894 (2017), 012058, 1–8 | MR

[12] J. Frehse, S. Goj, J. Malek, “On a Stokes-like system for mixtures of fluids”, SIAM J. Math. Anal., 36:4 (2005), 1259–1281 | DOI | MR | Zbl

[13] J. Frehse, S. Goj, J. Malek, “A uniqueness result for a model for mixtures in the absence of external forces and interaction momentum”, Appl. Math., 50:6 (2005), 527–541 | DOI | MR | Zbl

[14] J. Frehse, W. Weigant, “On quasi-stationary models of mixtures of compressible fluids”, Appl. Math., 53:4 (2008), 319 | DOI | MR | Zbl

[15] N. Kucher, D. A. Prokudin, Stationary problems of mechanics of compressible viscous media, v. 1, Izd. Kemerov. Gos. Univ., Kemerovo, 2011 (in Russian)

[16] N. A. Kucher, A. E. Mamontov, D. A. Prokudin, “Stationary solutions to the equations of dynamics of mixtures of heat-conductive compressible viscous fluids”, Siberian Math. J., 53:6 (2012), 1338–1353 (in Russian) | MR | Zbl

[17] A. E. Mamontov, D. A. Prokudin, “Razreshimost' statsionarnoi kraevoi zadachi dlya uravnenii dvizheniya odnotemperaturnoi smesi vyazkikh szhimaemykh teploprovodnykh zhidkostei”, Izv. RAN. Ser. matematicheskaya, 78:3 (2014), 135–160 | MR | Zbl

[18] A. E. Mamontov, D. A. Prokudin, “Solvability of steady boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sibir. Elektron. Mat. Izv., 13 (2016), 664–693 (in Russian) | Zbl

[19] D. A. Prokudin, M. V. Krayushkina, “Solvability of a stationary boundary value problem for a model system of the equations of barotropic motion of a mixture of compressible viscous fluids”, J. Appl. Ind. Math., 10:3 (2016), 417–428 | DOI | MR | Zbl

[20] A. E. Mamontov, D. A. Prokudin, “Solvability of the regularized steady problem of the spatial motions of multicomponent viscous compressible fluids”, Siberian Math. J., 57:6 (2016), 1044–1054 | DOI | MR | Zbl

[21] A. E. Mamontov, D. A. Prokudin, “Solvability of initial boundary value problem for the equations of polytropic motion of multicomponent viscous compressible fluids”, Sibir. Elektron. Mat. Izv., 13 (2016), 541–583 (in Russian) | Zbl

[22] A. E. Mamontov, D. A. Prokudin, “Existence of weak solutions to the three-dimensional problem of steady barotropic motions of mixtures of viscous compressible fluids”, Siberian Math. J., 58:1 (2017), 148–164 | MR | Zbl

[23] A. E. Mamontov, D. A. Prokudin, “Solvability of nonstationary equations of multicomponent viscous compressible fluids”, Izv. Ross. Akad. Nauk. Ser. Mat., 82:1 (2018), 151–197 (in Russian) | MR | Zbl

[24] A. E. Mamontov, D. A. Prokudin, “Global solvability of 1D equations of viscous compressible multifluids”, J. Physics: Conf. Ser., 894 (2017), 012059, 1–7

[25] D. A. Prokudin, “Unique solvability of initial boundary value problem for a model system of equations for the polytropic motion of a mixture of viscous compressible fluids”, Sibir. Elektron. Mat. Izv., 14 (2017), 568–585 (in Russian) | MR | Zbl

[26] D. A. Prokudin, “Global solvability of the initial boundary value problem for a model system of onedimensional equations of polytropic flows of viscous compressible fluid mixtures”, J. Physics: Conf. Ser., 894 (2017), 012076, 1–6 | DOI | MR

[27] A. E. Mamontov, D. A. Prokudin, “Local solvability of initial-boundary value problem for one-dimensional equations of polytropic flows of viscous compressible multifluids”, J. Math. Sci., 231:2 (2018), 227–242 | DOI | MR

[28] A. V. Kazhikhov, V. V. Shelukhin, “Unique global in time solvability of initial boundary value problems for one-dimensional equations of a viscous gas”, Prikl. Mat. Mekh., 41:2 (1977), 282–291 (in Russian) | MR

[29] S. N. Antontsev, A. V. Kazhikhov, V. N. Monakhov, Boundary value problems of mechanics of inhomogeneous liquids, Nauka, Novosibirsk, 1983 (in Russian) | MR

[30] V. V. Shelukhin, “On structure of the generalized solutions of one-dimensional equations of a polytropic viscous gas”, Prikl. Mat. Mekh., 48:6 (1984), 912–920 (in Russian) | MR | Zbl

[31] A. V. Kazhikhov, Selected Works. Mathematical Hydrodynamics, Izd. Inst. Gidrodinamiki SO RAN, Novosibirsk, 2008 (in Russian)

[32] A. V. Kazhikhov, A. N. Petrov, “Correctness of the initial boundary value problem for a model system of equations of a multicomponent mixture”, Dinamika Sploshnoi Sredy, 35 (1978), 61–73 (in Russian)

[33] A. N. Petrov, “Correctness of Initial Boundary Value Problems for OneDimensional Equations of Interpenetrating Motion of Perfect Gases”, Dinamika Sploshnoi Sredy, 56 (1982), 105–121 (in Russian)

[34] A. A. Zlotnik, “Uniform estimates and stabilization of solutions of a system of equations for one-dimensional motion of a multicomponent barotropic mixture”, Mat. Zametki, 58:2 (1995), 307–312 (in Russian) | Zbl