Magnetohydrodynamic vortex motion of an incompressible polymeric fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 5-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is some mathematical model describing magnetohydrodynamic motion of viscoelastic polymeric fluid in the cylindrical near-axial zone of a swirl chamber. The absence of steady-state solutions is proved for the cylindrical zone with a fixed lateral boundary. The solutions are also considered in the case of near-axial zone with a free lateral boundary.
Keywords: magnetohydrodynamics, rheological model
Mots-clés : vortex motion. .
@article{SJIM_2021_24_1_a0,
     author = {A. M. Blokhin and R. E. Semenko and A. S. Rudometova},
     title = {Magnetohydrodynamic vortex motion of an incompressible polymeric fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {5--17},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a0/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - R. E. Semenko
AU  - A. S. Rudometova
TI  - Magnetohydrodynamic vortex motion of an incompressible polymeric fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2021
SP  - 5
EP  - 17
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a0/
LA  - ru
ID  - SJIM_2021_24_1_a0
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A R. E. Semenko
%A A. S. Rudometova
%T Magnetohydrodynamic vortex motion of an incompressible polymeric fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2021
%P 5-17
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a0/
%G ru
%F SJIM_2021_24_1_a0
A. M. Blokhin; R. E. Semenko; A. S. Rudometova. Magnetohydrodynamic vortex motion of an incompressible polymeric fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 24 (2021) no. 1, pp. 5-17. http://geodesic.mathdoc.fr/item/SJIM_2021_24_1_a0/

[1] J. G. Oldroyd, “On the formulation of rheological equations of state”, Proc R. Soc., 200 (1950), 523–541 | DOI | MR | Zbl

[2] P. G. De Gennes, Scaling Concepts in Polymer Physics, Cornell Univ. Press, Ithaca, 1979

[3] M. Doi, S. F. Edwards, The Theory of Polymer Dynamics, Clarendon, Oxford, 1986

[4] R. B. Bird, C. F. Curtiss, R. C. Armstrong, O. Hassager, Dynamics of Polymeric Liquids, v. 2, Wiley, N.Y., 1987 | MR

[5] V. N. Pokrovskii, The Mesoscopic Theory of Polymer Dynamics, Springer, Dordrecht, 2010

[6] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, “Introduction to the mesoscopic theory of fluid polymeric systems”, izd. Altai. Gos. Ped. Akad., Barnaul, 2012 (in Russian)

[7] I. I. Smul'skii, Aerodynamics and processes in vortex chambers, Nauka, Novosibirsk, 1992 (in Russian)

[8] W. S. Lewellen, “A solution for three-dimensional vortex flows with strong circulation”, J. Fluid Mech., 14:3 (1962), 420–432 | DOI | MR | Zbl

[9] Lin Yang, Jia-Lin Tian, Zhi Yang, “Numerical analysis of non-Newtonian rheology effect on hydrocyclone flow field”, Petroleum, 1:1 (2015), 68–74 | DOI

[10] C. S. Chiou, R. J. Gordon, “Vortex flow of dilute polymer solutions”, Polym. Eng. Sci., 20:7 (1980), 456–465 | DOI

[11] V. D. Borisevich, E. P. Potanin, J. Whichello, “Circulation control in magnetohydrodynamic rotating flows”, J. Fluid Mech., 829 (2017), 328–344 | DOI | MR | Zbl

[12] A. M. Blokhin, R. E. Semenko, “On a model of vortex motion of an incompressible polymeric liquid in the axial zone”, J. Appl. Ind. Math., 10:1 (2016), 69–77 | DOI | DOI | MR | Zbl

[13] L. I. Sedov, Mechanics of Continuous Media, v. 1, World Scientific, Singapore, 1997 | MR | Zbl

[14] L. G. Loitsyanskii, Mechanics of Liquids and Gases, Stewartson Pergamon Press, Oxford, 1966

[15] A. B. Vatazhin, G. A. Lyubimov, S. A. Regirer, Magnetic hydrodynamical flows in channels, Nauka, M., 1970 (in Russian)

[16] B. Shi-I, Introduction to the theory of compressible fluid flow, Izd-vo Inostrannaya Literatura, M., 1962 (in Russian)

[17] A. M. Blokhin, A. S. Rudometova, “Stationary flows of a weakly conducting incompressible polymeric liquid between coaxial cylinders”, J. Appl. Ind. Math., 11 (2017), 486–493 | DOI | DOI | MR | Zbl

[18] N. V. Bambaeva, A. M. Blokhin, “Stationary solutions of equations of incompressible viscoelastic polymer liquid”, Comput. Math. and Math. Phys., 54:5 (2014), 874–899 | DOI | DOI | MR | Zbl

[19] A. I. Akhiezer, I. A. Akhiezer, Electromagnetism and Electromagnetic Waves, Vysshaya Shkola, M., 1985 (in Russian)

[20] K. Nordling, J. Osterman, Physics Handbook for Science and Engineering, Studentlitteratur, Lund, 1999 | MR

[21] A. Yu. Gubin, “On Stability of a Vortex Motion of a Viscid Incompressible Fluid”, Sib. Zhurn. Industr. Matematiki, 7:2 (2004), 40–53 (in Russian) | MR | Zbl

[22] O. N. Ul'yanov, “On a Class of Flows of a Viscid Fluid”, Dinamika Zhidkosti i Gaza, Trudy Inst. Mat. Mekh. Ural Otdel. RAN, 9, no. 2, 2003, 129–136 (in Russian)

[23] S. G. Kalashnikov, Electricity, Nauka, M., 1964 (in Russian)

[24] L. D. Landau, E. M. Lifshits, Electrodynamic of Continuous Media, Fizmatgiz, M., 1959 (in Russian) | MR