Estimation of the calculation accuracy in the problem
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 91-104.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration is the problem of estimating the accuracy of calculations in the problem of partial identification of the chemical composition of an unknown medium from the results of repeated irradiation of this medium by collimated X-ray fluxes at various energies. The mathematical formulation of the identification problem is presented together with its comparison with a similar problem of finding the chemical composition of an unknown medium. At the first stage of solution, both problems are reduced to studying the singular numbers for a system of algebraic equations that is linear in the products of unknowns.The dimension of this system equals the number of the chemical elements that by assumption can compose the unknown medium. The main role in the identification is played by the intersection of all possible perturbation ellipsoids of the system solution. It is established that the «minimum diameter» of the intersection decreases as the dimension of the problem grows. Thus, in many cases, the solution error can decrease when the problem dimension increases. This result significantly distinguishes the problem of identification of a substance from the problem of finding the chemical composition. The method we propose for solving the identification problem allows us to obtain the set of energy values at which the error of the problem solution is minimal.
Keywords: radiography of a continuous medium, identification of the chemical composition of a substance, calculation accuracy. .
Mots-clés : singular value decomposition
@article{SJIM_2020_23_3_a7,
     author = {V. G. Nazarov},
     title = {Estimation of the calculation accuracy in the problem},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {91--104},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a7/}
}
TY  - JOUR
AU  - V. G. Nazarov
TI  - Estimation of the calculation accuracy in the problem
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 91
EP  - 104
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a7/
LA  - ru
ID  - SJIM_2020_23_3_a7
ER  - 
%0 Journal Article
%A V. G. Nazarov
%T Estimation of the calculation accuracy in the problem
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 91-104
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a7/
%G ru
%F SJIM_2020_23_3_a7
V. G. Nazarov. Estimation of the calculation accuracy in the problem. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 91-104. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a7/

[1] S. Osipov, S. Chakhlov, A. Batranin, O. Osipov, Trinh Van Bak, J. Kytmanov, “Theoretical study of a simplified implementation model of a dual-energy technique for computed tomography”, NDT E International, 98 (2018), 63–69 | DOI

[2] S. P. Osipov, V. A. Udod, Y. Wang, “Identification of materials in X-ray inspections of objects by the dual-energy method”, Russian J. Nondestructive Testing, 53:8 (2017), 568–587 | DOI

[3] V. G. Nazarov, “Problem of partial identification of an unknown substance”, Dal'nevost. Mat. Zh., 19:1 (2019), 43–62 (in Russian) | Zbl

[4] J. H. Hubbell, S. M. Seltzer, Preprint / NISTIR-5632, National Institute of Standards and Technology, Gaithersburg, 1995

[5] M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, XCOM: Photon Cross Section Database, National Institute of Standards and Technology, Gaithersburg, 2005 http://www.physics.nist.gov/xcom

[6] D. S. Anikonov, A. E. Kovtanyuk, I. V. Prokhorov, Transport Equation, Tomography, VSP, Utrecht–Boston, 2002 | Zbl

[7] V. G. Nazarov, “Method of singular decomposition of a matrix in the problem of finding the chemical composition of a medium”, Sibir. Elektron. Mat. Izv., 14 (2017), 821–837 (in Russian) | Zbl

[8] S. K. Godunov, A. G. Antonov, O. P. Kirilyuk, V. I. Kostin, Guarantee accuracy of solution of the systems of linear equations in Euclidean spaces, Nauka, Novosibirsk, 1988

[9] G. E. Forsythe, M. A. Malcolm, C. B. Moler, Computer methods for mathematical computations, Prentice-Hall, Englewood Cliffs, 1977 | Zbl

[10] A. I. Volkov, I. M. Zharskii, Large Chemical Handbook, Sovremennaya shkola, Minsk, 2005 (in Russian)

[11] Chemical Encyclopedia, 1–5, Sovetskaya Entsiklopediya, Moscow, 1988 (in Russian)