Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_3_a3, author = {A. L. Karchevsky}, title = {Solution of the convolution type {Volterra} integral equations}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {40--52}, publisher = {mathdoc}, volume = {23}, number = {3}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a3/} }
A. L. Karchevsky. Solution of the convolution type Volterra integral equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 40-52. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a3/
[1] A. L. Karchevsky, “Development of the heated thin foil technique for investigating nonstationary transfer processes”, Interfacial Phenomena and Heat Transfer, 6:3 (2018), 179–185 | DOI
[2] A. L. Karchevsky, Y. M. Turganbayev, S. J. Rakhmetullina, Zh. T. Beldeubayeva, “Numerical solution of an inverse problem of determining the parameters of a source of groundwater pollution”, Eurasian J. Math. Comput. Appl., 5:1 (2017), 53–73 https://drive.google.com/file/d/0B2IhUwjYFHEBMnI4SFlyc2ROMGM/view
[3] V. O. Sergeev, “Regularization of the Volterra equation of the first kind”, Dokl. Akad. Nauk SSSR, 197:3 (1971), 531–534 (in Russian) | Zbl
[4] A. M. Denisov, “Regularization of the Volterra equation of the first kind”, Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975), 1053–1056 (in Russian) | Zbl
[5] N. A. Magnitskii, “An approach to regularization of the Volterra equations of the first kind”, Zh. Vychisl. Mat. Mat. Fiz., 15:5 (1975), 1317–1323 (in Russian) | Zbl
[6] A. S. Apartsin, “On numerical solution of integral Volterra equations of the first kind by the regularized quadrature method”, Metody optimizatsii i ikh prilozheniya, 1979, no. 9, 99–107 (in Russian) | Zbl
[7] A. F. Verlan', A. F. Sizikov, Integral equations: methods, algorithms, and programs, Handbook, Naukova dumka, Kiev, 1986 (in Russian)
[8] A. L. Karchevsky, “On a solution of the convolution type Volterra equation of the 1st kind”, Advanced Math. Models Applications, 2:1 (2017), 1–5 http://jomardpublishing.com/UploadFiles/Files/journals/AMMAV1N1/Vol2No1/KarchevskyA.pdf | DOI
[9] A. V. Manzhirov, A. D. Polyanin, Integral equations: methods of solution, Handbook, Faktorial Press, Moscow, 2000 (in Russian)
[10] A. D. Polyanin, A. V. Manzhirov, Integral equations, Handbook, Fizmatlit, Moscow, 2003 (in Russian)
[11] EqWorld, http://eqworld.ipmnet.ru
[12] E. Ch. Titchmarsh, Introduction to the Theory of Fourier's Integrals, Oxford Univ. Press, 1937
[13] G. M. Fikhtengol'ts, Fundamentals of mathematical analysis, Lan', Moscow, 2008 (in Russian)
[14] A. S. Apartsin, A. B. Bakushinskii, “Approximate solution of the integral Volterra equations of the first kind by the method of quadrature sums”, Differential and Integral Equations, 1972, no. 1, 248–258 (in Russian)