Solution of the convolution type Volterra integral equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 40-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some algorithm is presented for solving the convolution type Volterra integral equation of the first kind by the quadrature-sum method. We assume that the integral equation of the first kind cannot be reduced to an integral equation of the second kind but we do not assume that either the kernel or some of its derivatives at zero are unequal to zero. For the relations we propose there is given an estimate of the error of the calculated solution. Some examples of numerical experiments are presented to demonstrate the efficiency of the algorithm.
Keywords: integral Volterra equation, numerical solution.
Mots-clés : convolution type equation
@article{SJIM_2020_23_3_a3,
     author = {A. L. Karchevsky},
     title = {Solution of the convolution type {Volterra} integral equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {40--52},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a3/}
}
TY  - JOUR
AU  - A. L. Karchevsky
TI  - Solution of the convolution type Volterra integral equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 40
EP  - 52
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a3/
LA  - ru
ID  - SJIM_2020_23_3_a3
ER  - 
%0 Journal Article
%A A. L. Karchevsky
%T Solution of the convolution type Volterra integral equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 40-52
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a3/
%G ru
%F SJIM_2020_23_3_a3
A. L. Karchevsky. Solution of the convolution type Volterra integral equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 40-52. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a3/

[1] A. L. Karchevsky, “Development of the heated thin foil technique for investigating nonstationary transfer processes”, Interfacial Phenomena and Heat Transfer, 6:3 (2018), 179–185 | DOI

[2] A. L. Karchevsky, Y. M. Turganbayev, S. J. Rakhmetullina, Zh. T. Beldeubayeva, “Numerical solution of an inverse problem of determining the parameters of a source of groundwater pollution”, Eurasian J. Math. Comput. Appl., 5:1 (2017), 53–73 https://drive.google.com/file/d/0B2IhUwjYFHEBMnI4SFlyc2ROMGM/view

[3] V. O. Sergeev, “Regularization of the Volterra equation of the first kind”, Dokl. Akad. Nauk SSSR, 197:3 (1971), 531–534 (in Russian) | Zbl

[4] A. M. Denisov, “Regularization of the Volterra equation of the first kind”, Zh. Vychisl. Mat. Mat. Fiz., 15:4 (1975), 1053–1056 (in Russian) | Zbl

[5] N. A. Magnitskii, “An approach to regularization of the Volterra equations of the first kind”, Zh. Vychisl. Mat. Mat. Fiz., 15:5 (1975), 1317–1323 (in Russian) | Zbl

[6] A. S. Apartsin, “On numerical solution of integral Volterra equations of the first kind by the regularized quadrature method”, Metody optimizatsii i ikh prilozheniya, 1979, no. 9, 99–107 (in Russian) | Zbl

[7] A. F. Verlan', A. F. Sizikov, Integral equations: methods, algorithms, and programs, Handbook, Naukova dumka, Kiev, 1986 (in Russian)

[8] A. L. Karchevsky, “On a solution of the convolution type Volterra equation of the 1st kind”, Advanced Math. Models Applications, 2:1 (2017), 1–5 http://jomardpublishing.com/UploadFiles/Files/journals/AMMAV1N1/Vol2No1/KarchevskyA.pdf | DOI

[9] A. V. Manzhirov, A. D. Polyanin, Integral equations: methods of solution, Handbook, Faktorial Press, Moscow, 2000 (in Russian)

[10] A. D. Polyanin, A. V. Manzhirov, Integral equations, Handbook, Fizmatlit, Moscow, 2003 (in Russian)

[11] EqWorld, http://eqworld.ipmnet.ru

[12] E. Ch. Titchmarsh, Introduction to the Theory of Fourier's Integrals, Oxford Univ. Press, 1937

[13] G. M. Fikhtengol'ts, Fundamentals of mathematical analysis, Lan', Moscow, 2008 (in Russian)

[14] A. S. Apartsin, A. B. Bakushinskii, “Approximate solution of the integral Volterra equations of the first kind by the method of quadrature sums”, Differential and Integral Equations, 1972, no. 1, 248–258 (in Russian)