The D'Alembert---Lagrange principle: a geometrical aspect
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 31-39.

Voir la notice de l'article provenant de la source Math-Net.Ru

The d'Alembert—Lagrange principle and the theory of ideal connections are considered from the viewpoint of modern differential geometry and tensor analysis.
Keywords: classical mechanics, the d'Alembert—Lagrange principle.
@article{SJIM_2020_23_3_a2,
     author = {O. E. Zubelevich},
     title = {The {D'Alembert---Lagrange} principle: a geometrical aspect},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {31--39},
     publisher = {mathdoc},
     volume = {23},
     number = {3},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a2/}
}
TY  - JOUR
AU  - O. E. Zubelevich
TI  - The D'Alembert---Lagrange principle: a geometrical aspect
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 31
EP  - 39
VL  - 23
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a2/
LA  - ru
ID  - SJIM_2020_23_3_a2
ER  - 
%0 Journal Article
%A O. E. Zubelevich
%T The D'Alembert---Lagrange principle: a geometrical aspect
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 31-39
%V 23
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a2/
%G ru
%F SJIM_2020_23_3_a2
O. E. Zubelevich. The D'Alembert---Lagrange principle: a geometrical aspect. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a2/

[1] S. V. Bolotin, A. V. Karapetyan, E. I. Kugushev, D. V. Treshchev, Theoretical mechanics, Akademiya, Moscow, 2010 (in Russian)

[2] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Modern geometry. Methods and applications, Nauka, Moscow, 1986 (in Russian)

[3] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Fizmatlit, Moscow, 2004 (in Russian)