The D'Alembert—Lagrange principle: a geometrical aspect
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 31-39
Cet article a éte moissonné depuis la source Math-Net.Ru
The d'Alembert—Lagrange principle and the theory of ideal connections are considered from the viewpoint of modern differential geometry and tensor analysis.
Keywords:
classical mechanics, the d'Alembert—Lagrange principle.
@article{SJIM_2020_23_3_a2,
author = {O. E. Zubelevich},
title = {The {D'Alembert{\textemdash}Lagrange} principle: a geometrical aspect},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {31--39},
year = {2020},
volume = {23},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a2/}
}
O. E. Zubelevich. The D'Alembert—Lagrange principle: a geometrical aspect. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/SJIM_2020_23_3_a2/
[1] S. V. Bolotin, A. V. Karapetyan, E. I. Kugushev, D. V. Treshchev, Theoretical mechanics, Akademiya, Moscow, 2010 (in Russian)
[2] B. A. Dubrovin, S. P. Novikov, A. T. Fomenko, Modern geometry. Methods and applications, Nauka, Moscow, 1986 (in Russian)
[3] A. N. Kolmogorov, S. V. Fomin, Elements of function theory and functional analysis, Fizmatlit, Moscow, 2004 (in Russian)