Detection of the corner structures in images by scalable masks
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 70-83.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under consideration are the scalable masks for detection of corner structures in digital images which are used when processing by a window sliding through an image. The proposed matrices of masks of arbitrary size are constructed by adding rows and columns along the perimeter to the matrix of smaller masks. The submatrices remain unchanged, whereas some new elements are added by repeating the submatrix entries that preserve the structure of the corner. The algorithm can be used in processing visual data of robotics, aerial photography, and crystallography.
Keywords: image processing, sliding window, scalable mask, corner detection.
@article{SJIM_2020_23_1_a6,
     author = {I. G. Kazantsev and B. O. Mukhametzhanova and K. T. Iskakov and T. Mirgalikyzy},
     title = {Detection of the corner structures in images by scalable masks},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {70--83},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a6/}
}
TY  - JOUR
AU  - I. G. Kazantsev
AU  - B. O. Mukhametzhanova
AU  - K. T. Iskakov
AU  - T. Mirgalikyzy
TI  - Detection of the corner structures in images by scalable masks
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 70
EP  - 83
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a6/
LA  - ru
ID  - SJIM_2020_23_1_a6
ER  - 
%0 Journal Article
%A I. G. Kazantsev
%A B. O. Mukhametzhanova
%A K. T. Iskakov
%A T. Mirgalikyzy
%T Detection of the corner structures in images by scalable masks
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 70-83
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a6/
%G ru
%F SJIM_2020_23_1_a6
I. G. Kazantsev; B. O. Mukhametzhanova; K. T. Iskakov; T. Mirgalikyzy. Detection of the corner structures in images by scalable masks. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 70-83. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a6/

[1] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Tekhnosfera, M., 2006 (in Russian)

[2] P. A. Bakut, G. S. Kolmogorov, I. E. Vornovitskii, “Image segmentation: methods of threshold processing”, Zarubezh. Radioelektronika, 1987, no. 10, 6–24 (in Russian) | MR

[3] B. A. Alpatov, P. V. Babayan, O. E. Balashov, A. I. Stepashkin, Methods for Autodetection and Maintenance of Objects. Image Processing and Control, Radiotekhnika, M., 2008 (in Russian)

[4] A. Dutta, A. Kar, B. N. Chatterji, “Corner detection algorithms for digital images in last three decades”, Institution of Electronics and Telecommunication Engineers Technical Review, 25:3 (2008), 123–133

[5] J. Chen, L. Zou, J. Zhang, L. Dou, “The comparison and application of corner detection algorithms”, J. Multimedia, 4:6 (2009), 435–441 | DOI

[6] A. N. Kozlovskii, “Corner point detector based on approximation of contours of image objects”, Informatika, 28:4 (2010), 36–47 (in Russian)

[7] D. I. Borisenko, “Methods of corner peculiar properties retrieval in images”, Molodoi Uchenyi, 1:5 (2011), 120–123 (in Russian)

[8] I. Golightly, D. Jones, “Corner detection and matching for visual tracking during power line inspection”, Image and Vision Computing, 21 (2003), 827–840 | DOI

[9] X. Gao, F. Sattar, R. Venkateswarlu, “Multiscale corner detection of gray level images based on loggabor wavelet transform”, IEEE Transactions on Circuits and Systems for Video Technology, 17:7 (2007), 868–875 | DOI

[10] E. Rosten, R. Porte, T. Drummond, “Faster and Better: A machine learning approach to corner detection”, IEEE Trans. Pattern Analysis and Machine Intelligence, 32:1 (2010), 105–119 | DOI

[11] J. Sharpnack, “Learning patterns for detection with multiscale scan statistics”, Proc. Machine Learning Research, 75 (2018), 950–969

[12] B. H. Shekar, K. P. Uma, “Kirsch directional derivatives based shot boundary detection: an efficient and accurate method”, Procedia Computer Sci., 58 (2015), 565–571 | DOI

[13] M. Pietikainen, G. Zhao, “Two decades of local binary patterns: A survey”, Advances in Independent Component Analysis and Learning Machines, Chapter 9, Elsevier, 2015, 175–210 | DOI

[14] W. Peng, X. Hongling, L. Wenlin, S. Wenlong, “Harris scale invariant corner detection algorithm based on the significant region”, Internat. J. Signal Processing, Image Processing and Pattern Recognition, 9:3 (2016), 413–420 | DOI

[15] A. R. Rivera, J. R. Castillo, O. Chae, “Local directional number pattern for face analysis: face and expression recognition”, IEEE Trans. Image Processing, 22:5 (2013), 1740–1752 | DOI | MR | Zbl

[16] A. Buades, R. Grompone von Gioi, J. Navarro, “Joint contours, corner and T-junction detection: An approach inspired by the mammal visual system”, J. Math. Imaging and Vision, 60 (2018), 341–354 | DOI | MR | Zbl

[17] H. Liu, S. Tan, “Image regularizations based on the sparsity of corner points”, IEEE Trans. Image Processing, 28:1 (2019), 72–87 | DOI | MR | Zbl

[18] I. G. Kazantsev, “On a corner points detector in images”, Proceedings of 14th International Scientific Congress “INTEREKSPO GEO-SIBIR'-2018”, v. 1, Methods of Earth Remote Monitoring and Terrestrial Photogrammetry, Monitoring of Environment, and Geoecology, Publ. SGUGiT, Novosibirsk, 2018, 89–93

[19] P. A. Chochia, “A pyramidal algorithm of image segmentation”, Informatsionnye protsessy, 10:1 (2010), 23–35 (in Russian) | MR

[20] A. N. Shiryaev, Stochastic Problems of Disorder, Publ. MTsNMO, M., 2016 (in Russian)

[21] A. A. Borovkov, “On estimation of parameters in the case of discontinuous densities”, Theory Probab. Appl., 63:2 (2018), 169–192 | DOI | DOI | MR | Zbl