Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid
Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 16-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under discussion is the the so-called acoustic systems (in linear and nonlinear cases) for the system of equations describing the movement of incompressible viscoelastic polymer fluid. We also consider some approximations of these systems.
Keywords: acoustic systems, the state of rest, polymer fluid.
Mots-clés : small perturbations
@article{SJIM_2020_23_1_a2,
     author = {A. M. Blokhin and A. Yu. Goldin},
     title = {Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {16--27},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2020},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/}
}
TY  - JOUR
AU  - A. M. Blokhin
AU  - A. Yu. Goldin
TI  - Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2020
SP  - 16
EP  - 27
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/
LA  - ru
ID  - SJIM_2020_23_1_a2
ER  - 
%0 Journal Article
%A A. M. Blokhin
%A A. Yu. Goldin
%T Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2020
%P 16-27
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/
%G ru
%F SJIM_2020_23_1_a2
A. M. Blokhin; A. Yu. Goldin. Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 16-27. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/

[1] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Flowable Poly-meric Systems, Publ. Altai. PGA, Barnaul, 2012 (in Russian)

[2] L. V. Ovsyannikov, Lecture Notes on Basics of Gas Dynamics, Nauka, M., 1981 (in Russian)

[3] L. G. Loitsyanskii, Fluid and Gas Mechanics, Nauka, M., 1978 (in Russian)

[4] A. M. Blokhin, A. Yu. Goldin, “To the question of linear stability of a steady state for an incompressible polymeric fluid”, Sibir. Zh. Chist. i Prikl. Mat., 16:4 (2016), 17–27 (in Russian) | Zbl

[5] A. M. Blokhin, A. Yu. Goldin, “On linear instability of flows of an incompressible polymeric fluid with a strong discontinuity”, Zh. Teor. Fiz., 88:10 (2018), 1506–1514 (in Russian) | DOI

[6] A. M. Blokhin, N. V. Bambaeva, “Stationary solutions to the equations of an incompressible viscoelastic polymeric fluid”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 55–69 (in Russian)

[7] N. N. Yanenko, Subincremental Method for Solution of Multidimensional Problems of Mathematical Physics, Nauka, Novosibirsk, 1967 (in Russian)

[8] K. I. Babenko, Basics of Numerical Analysis, Regulyarnaya i Khaoticheskaya Dinamika, M.–Izhevsk, 2002 (in Russian)

[9] S. K. Godunov, Ordinary Differential Equations with Constant Coefficients, v. 1, Boundary Value Problems, Publ. Novosib. Gos. Univ., Novosibirsk, 1994 (in Russian)