Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2020_23_1_a2, author = {A. M. Blokhin and A. Yu. Goldin}, title = {Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {16--27}, publisher = {mathdoc}, volume = {23}, number = {1}, year = {2020}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/} }
TY - JOUR AU - A. M. Blokhin AU - A. Yu. Goldin TI - Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2020 SP - 16 EP - 27 VL - 23 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/ LA - ru ID - SJIM_2020_23_1_a2 ER -
%0 Journal Article %A A. M. Blokhin %A A. Yu. Goldin %T Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid %J Sibirskij žurnal industrialʹnoj matematiki %D 2020 %P 16-27 %V 23 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/ %G ru %F SJIM_2020_23_1_a2
A. M. Blokhin; A. Yu. Goldin. Derivation of linear and nonlinear acoustic systems for an incompressible viscoelastic polymer fluid. Sibirskij žurnal industrialʹnoj matematiki, Tome 23 (2020) no. 1, pp. 16-27. http://geodesic.mathdoc.fr/item/SJIM_2020_23_1_a2/
[1] Yu. A. Altukhov, A. S. Gusev, G. V. Pyshnograi, Introduction to the Mesoscopic Theory of Flowable Poly-meric Systems, Publ. Altai. PGA, Barnaul, 2012 (in Russian)
[2] L. V. Ovsyannikov, Lecture Notes on Basics of Gas Dynamics, Nauka, M., 1981 (in Russian)
[3] L. G. Loitsyanskii, Fluid and Gas Mechanics, Nauka, M., 1978 (in Russian)
[4] A. M. Blokhin, A. Yu. Goldin, “To the question of linear stability of a steady state for an incompressible polymeric fluid”, Sibir. Zh. Chist. i Prikl. Mat., 16:4 (2016), 17–27 (in Russian) | Zbl
[5] A. M. Blokhin, A. Yu. Goldin, “On linear instability of flows of an incompressible polymeric fluid with a strong discontinuity”, Zh. Teor. Fiz., 88:10 (2018), 1506–1514 (in Russian) | DOI
[6] A. M. Blokhin, N. V. Bambaeva, “Stationary solutions to the equations of an incompressible viscoelastic polymeric fluid”, Zh. Vychisl. Mat. Mat. Fiz., 54:5 (2014), 55–69 (in Russian)
[7] N. N. Yanenko, Subincremental Method for Solution of Multidimensional Problems of Mathematical Physics, Nauka, Novosibirsk, 1967 (in Russian)
[8] K. I. Babenko, Basics of Numerical Analysis, Regulyarnaya i Khaoticheskaya Dinamika, M.–Izhevsk, 2002 (in Russian)
[9] S. K. Godunov, Ordinary Differential Equations with Constant Coefficients, v. 1, Boundary Value Problems, Publ. Novosib. Gos. Univ., Novosibirsk, 1994 (in Russian)