Mots-clés : elliptic equations
@article{SJIM_2019_22_4_a9,
author = {S. B. Sorokin},
title = {An implicit iterative method for numerical solution},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {95--106},
year = {2019},
volume = {22},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a9/}
}
S. B. Sorokin. An implicit iterative method for numerical solution. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 95-106. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a9/
[1] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1979
[2] S. I. Kabanikhin, A. L. Karchevsky, “Optimizational method for solving the Cauchy problem for an elliptic equation”, J. Inverse Ill-Posed Probl., 3:1 (1995), 21–46 | DOI | MR | Zbl
[3] S. I. Kabanikhin, Obratnye i nekorrektnye zadachi, Sibirskoe nauchnoe izd-vo, Novosibirsk, 2009
[4] A. A. Samarskii, E. S. Nikolaev, Metody resheniya setochnykh uravnenii, Nauka, M., 1978
[5] A. A. Samarskii, V. B. Andreev, Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1979
[6] S. B. Sorokin, “Ekonomichnyi pryamoi metod chislennogo resheniya zadachi Koshi dlya uravneniya Laplasa”, Sib. zhurn. vychisl. matematiki, 22:1 (2019), 99–117 | MR
[7] A. L. Karchevskii, “Korrektnaya skhema deistvii pri chislennom reshenii obratnoi zadachi optimizatsionnym metodom”, Sib. elektron. mat. izv., 5 (2008), 609–619