On the properties of the symbols of one class of hypoelliptic equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider regular hypoelliptic operators and study some properties of completely regular polyhedra. Basing on the obtained properties, we find an upper bound for the functional dimension of the solution spaces of hypoelliptic equations.
Keywords: completely regular polyhedron, regular operator (polynomial), functional dimension.
@article{SJIM_2019_22_4_a7,
     author = {H. A. Petrosyan},
     title = {On the properties of the symbols of one class of hypoelliptic equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a7/}
}
TY  - JOUR
AU  - H. A. Petrosyan
TI  - On the properties of the symbols of one class of hypoelliptic equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 81
EP  - 88
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a7/
LA  - ru
ID  - SJIM_2019_22_4_a7
ER  - 
%0 Journal Article
%A H. A. Petrosyan
%T On the properties of the symbols of one class of hypoelliptic equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 81-88
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a7/
%G ru
%F SJIM_2019_22_4_a7
H. A. Petrosyan. On the properties of the symbols of one class of hypoelliptic equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 81-88. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a7/

[1] S. Gindikin, L. Volevich, The Method of Newton's Polyhedron in the Theory of Partial Differential Equations, Kluwer Acad. Publ., 1992 | MR | Zbl

[2] S. M. Nikolskii, “Pervaya kraevaya zadacha dlya odnogo obschego lineinogo uravneniya”, Dokl. AN SSSR, 144:4 (1962), 767–769

[3] V. N. Margaryan, “Otsenki sverkhu funktsionalnoi razmernosti prostranstva reshenii gipoellipticheskikh uravnenii”, Izv. NAN Armenii, 37:5 (2002), 27–39 | MR | Zbl

[4] V. N. Margaryan, G. G. Kazaryan, “Otsenki reshenii negipoellipticheskikh uravnenii s dannym nositelem gipoelliptichnosti”, Izv. AN Armyanskoi SSR, 22:5 (1987), 315–336

[5] V. N. Margaryan, G. H. Hakobyan, “On Gevrey class solutions of hypoelliptic equations”, J. Contemp. Math. Anal., 33:1 (1998), 1–13 | MR

[6] Z. Zielezni, “On the functional dimension of solution of PDE Differencial Equations”, J. Differencial Equations, 18:2 (1975), 340–345 | DOI | MR

[7] M. Langenbruch, “On the functional dimension of solution spaces of hypoelliptic partial differential operators”, Math. Ann., 272 (1985), 217–229 | DOI | MR | Zbl

[8] M. Langenbruch, “P-Functionale und Raudwere zu Hypoelliptischen Differential operatoren”, Math. Ann., 239 (1979), 313–324 | DOI | MR

[9] V. N. Margaryan, G. G. Kazaryan, “O funktsionalnoi razmernosti prostranstva reshenii gipoellipticheskikh uravnenii”, Mat. sb., 115:157 (1981), 614–631 | Zbl

[10] V. P. Mikhailov, “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Dokl. AN SSSR, 164:3 (1965), 571–573

[11] G. E. Shilov, Matematicheskii analiz. Vtoroi spetsialnyi kurs, Nauka, M., 1965

[12] L. Khermander, Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 2, Mir, M., 1986

[13] A. Pich, Yadernye lokalno-vypuklye prostranstva, Mir, M., 1967

[14] L. Pontrjagin, L. Schnirelmann, “Sur une propriete metrique de la dimension”, Ann. Math., 33 (1932), 156–162 | DOI | MR

[15] A. N. Kolmogorov, V. M. Tikhomirov, “$\varepsilon$-Entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi mat. nauk, 14:2(96) (1959), 3–86 | MR | Zbl