On equilibrium of the elastic bodies with cracks
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 68-80.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the equilibrium problem of a two-dimensional elastic body with a crack crossing a thin rigid inclusion at some point. Nonpenetration conditions in the form of inequalities are put on the crack faces and at the intersection point of the crack with the rigid inclusion. The equilibrium problem of an elastic body with a crack crossing a thin elastic inclusion is also considered. The theorems of unique solvability of these problems are proved, and some complete systems of boundary conditions are obtained. The equivalence of the two formulations, variational and differential, is examined. We establish that the limit transition with respect to the rigidity parameter in the problems on the equilibrium of an elastic body with an elastic inclusion leads to the equilibrium problem of an elastic body with a rigid inclusion.
Keywords: rack, thin rigid inclusion, thin elastic inclusion, variational problem, nonpenetration condition.
@article{SJIM_2019_22_4_a6,
     author = {N. A. Nikolaeva},
     title = {On equilibrium of the elastic bodies with cracks},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {68--80},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a6/}
}
TY  - JOUR
AU  - N. A. Nikolaeva
TI  - On equilibrium of the elastic bodies with cracks
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 68
EP  - 80
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a6/
LA  - ru
ID  - SJIM_2019_22_4_a6
ER  - 
%0 Journal Article
%A N. A. Nikolaeva
%T On equilibrium of the elastic bodies with cracks
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 68-80
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a6/
%G ru
%F SJIM_2019_22_4_a6
N. A. Nikolaeva. On equilibrium of the elastic bodies with cracks. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 68-80. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a6/

[1] V. Z. Parton, E. M. Morozov, Mekhanika uprugoplasticheskogo razrusheniya, Nauka, M., 1985

[2] N. F. Morozov, Matematicheskie voprosy teorii treschin, Nauka, M., 1984

[3] A. M. Khludnev, V. A. Kovtunenko, Analysis of Cracks in Solids, WIT Press, Southampton–Boston, 2000

[4] A. M. Khludnev, Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[5] A. M. Khludnev, G. Leugering, “On elastic bodies with thin rigid inclusions and cracks”, Math. Meth. Appl. Sci., 33:16 (2010), 1955–1967 | MR | Zbl

[6] A. M. Khludnev, “Obizgibe uprugoi plastiny s otsloivshimsya tonkim zhestkim vklyucheniem”, Sib. zhurn. industr. matematiki, 14:1 (2011), 114–126 | Zbl

[7] V. V. Scherbakov, “Upravlenie zhestkostyu tonkikh vklyuchenii v uprugikh telakh s krivolineinymi treschinami”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 13 (2013), 135–149

[8] V. V. Scherbakov, “O vybore optimalnoi formy tonkikh zhestkikh vklyuchenii v uprugikh telakh”, Prikl. matematika i tekhn. fizika, 2 (2015), 178–187

[9] T. S. Popova, “O modelirovanii vyazkouprugogo tela s tonkim vklyucheniem”, Math. Montisnigri, 30 (2014), 25–36 | Zbl

[10] T. S. Popova, “Zadacha o ravnovesii vyazkouprugogo tela s treschinoi i tonkim zhestkim vklyucheniem”, Mat. zametki SVFU, 21:2 (2014), 94–105 | Zbl

[11] N. P. Lazarev, “Zadacha o ravnovesii plastiny Timoshenko, soderzhaschei treschinu vdol tonkogo zhestkogo vklyucheniya”, Vestn. Udmurtsk. gos. un-ta. Matematika. Mekhanika. Kompyuternye nauki, 1 (2014), 32–45 | Zbl

[12] A. M. Khludnev, M. Negri, “Crack on the boundary of a thin elastic inclusion inside an elastic body”, Z. Angew. Math. Mech., 92:5 (2012), 341–354 | DOI | MR | Zbl

[13] A. M. Khludnev, G. Leugering, “Delaminated thin elastic inclusion inside elastic bodies”, Math. Mech. Complex Systems, 2:1 (2014), 1–21 | DOI | MR | Zbl

[14] L. Faella, A. M. Khludnev, “Junction problem for elastic and rigid inclusions in elastic bodies”, Math. Meth. Appl. Sci., 39:12 (2016), 3381–3390 | DOI | MR | Zbl

[15] A. M. Khludnev, V. V. Shcherbakov, “Singular path-independent energy integrals for elastic bodies with Euler-Bernoulli inclusions”, Math. Mech. Solids, 22:11 (2017), 2180–2195 | DOI | MR | Zbl

[16] A. I. Furtsev, “O kontakte tonkogo prepyatstviya i plastiny, soderzhaschei tonkoe vklyuchenie”, Sib. zhurn. chistoi i prikl. matematiki, 17:4 (2017), 94–111 | MR | Zbl

[17] V. V. Shcherbakov, “The Griffith formula and J-integral for elastic bodies with Timoshenko inclusions”, Z. Angew. Math. Mech., 96:11 (2016), 1306–1317 | DOI | MR

[18] H. Itou, A. M. Khludnev, “On delaminated thin Timoshenko inclusions inside elastic bodies”, Math. Meth. Appl. Sci., 39:17 (2016), 4980–4993 | DOI | MR | Zbl

[19] A. M. Khludnev, L. Faella, T. S. Popova, “Junction problem for rigid and Timoshenko elastic inclusions in elastic bodies”, Math. Mech. Solids, 22:4 (2017), 1–14 | DOI | MR

[20] Kh. Itou, G. Loigering, A. M. Khludnev, “Tonkie vklyucheniya Timoshenko v uprugom tele s vozmozhnym otsloeniem”, Dokl. AN, 458:1 (2014), 32–35 | DOI | MR

[21] A. M. Khludnev, G. Leugering, “On Timoshenko thin elastic inclusions inside elastic bodies”, Math. Mech. Solids, 20 (2015), 495–511 | DOI | MR | Zbl

[22] A. M. Khludnev, T. S. Popova, “Junction problem for Euler-Bernoulli and Timoshenko elastic inclusions in elastic bodies”, Quart. Appl. Math., 74 (2016), 705–718 | DOI | MR | Zbl

[23] E. M. Rudoy, N. P. Lazarev, “Domain decomposition technique for a model of an elastic body reinforced by a Timoshenko's beam”, J. Comput. Appl. Math., 334 (2018), 18–26 | DOI | MR | Zbl

[24] N. V. Neustroeva, “Zhestkoe vklyuchenie v kontaktnoi zadache dlya uprugikh plastin”, Sib. zhurn. industr. matematiki, 12:4 (2009), 92–105 | MR | Zbl

[25] N. V. Neustroeva, “Odnostoronnii kontakt uprugikh plastin s zhestkim vklyucheniem”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 9:4 (2009), 51–64 | Zbl

[26] E. M. Rudoi, “Formula Griffitsa i integral Cherepanova Raisa dlya plastiny s zhestkim vklyucheniem i treschinoi”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:2 (2010), 98–117

[27] T. A. Rotanova, “O postanovkakh i razreshimosti zadachi o kontakte dvukh plastin, soderzhaschikh zhestkie vklyucheniya”, Sib. zhurn. industr. matematiki, 15:2 (2012), 107–118 | MR | Zbl

[28] N. P. Lazarev, “An equilibrium problem for the Timoshenko-type plate containing a crack on the boundary of a rigid inclusion”, J. Siberian Federal Univ. Mathematics. Physics, 6:1 (2013), 53–62 | MR