Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJIM_2019_22_4_a2, author = {U. D. Durdiev}, title = {An inverse problem for the system of viscoelasticity equations}, journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki}, pages = {26--32}, publisher = {mathdoc}, volume = {22}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/} }
U. D. Durdiev. An inverse problem for the system of viscoelasticity equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 26-32. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/
[1] D. K. Durdiev, U. D. Durdiev, “Ustoichivost resheniya obratnoi zadachi dlya integrodifferentsialnogo uravneniya Maksvella v odnorodnoi anizatropnoi srede”, Uzbek. mat. zhurn., 2 (2014), 25–34 | MR
[2] J. Janno, L. Von Welfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[3] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache obopredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matematiki, 15:1 (2012), 86–98 | Zbl
[4] D. K. Durdiev, Zh. D. Totieva, “Zadacha obopredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavkaz. mat. zhurn., 17:4 (2015), 18–43 | MR
[5] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Mat. zametki, 97:6 (2015), 855–867 | DOI | MR | Zbl
[6] D. K. Durdiev, Zh. D. Totieva, “Zadacha obopredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matematiki, 16:2 (2013), 72–82 | MR | Zbl
[7] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–268 | MR
[8] J. Jaan, L. Von Wolfersdorf, “An inverse problem for identification of a time- and spacedependent memory kernel in viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI | MR | Zbl
[9] F. Colombo, D. Guidetti, “A global in time existence and uniqueness result for a semilinear integro-differential parabolic inverse problem in Sobolev spaces”, Math. Methods Appl. Sci., 17 (2007), 1–29 | DOI | MR
[10] F. Colombo, D. Guidetti, “Some results on the Identification of memory kernels”, Oper. Theory Adv. Appl., 216 (2011), 121–138 | MR
[11] A. Favaron, “Identification of Memory Kernels Depending on Time and on an Angular Variable”, Zeitschrift Anal. Anwendungen, 24:4 (2005), 735–762 | DOI | MR
[12] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984
[13] A. V. Vasileva, N. A. Tikhonov, Integralnye uravneniya, Fizmatlit, M., 2002