An inverse problem for the system of viscoelasticity equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the problem of reconstructing the memory function of a viscoelastic medium from the system of viscoelastic equations for a homogeneous anisotropic medium. As additional information, the Fourier image of the displacement vector with respect to the spatial variables for the values $\nu_0\neq 0$ of the transformation parameter is given. It is demonstrated that, provided the data of the problem satisfy some conditions of agreement and smoothness, the solution of the problem is uniquely determined in the class of continuous functions and depends continuously on the given functions.
Keywords: inverse problem, viscoelasticity, uniqueness, stability.
Mots-clés : existence
@article{SJIM_2019_22_4_a2,
     author = {U. D. Durdiev},
     title = {An inverse problem for the system of viscoelasticity equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/}
}
TY  - JOUR
AU  - U. D. Durdiev
TI  - An inverse problem for the system of viscoelasticity equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 26
EP  - 32
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/
LA  - ru
ID  - SJIM_2019_22_4_a2
ER  - 
%0 Journal Article
%A U. D. Durdiev
%T An inverse problem for the system of viscoelasticity equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 26-32
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/
%G ru
%F SJIM_2019_22_4_a2
U. D. Durdiev. An inverse problem for the system of viscoelasticity equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 26-32. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/

[1] D. K. Durdiev, U. D. Durdiev, “Ustoichivost resheniya obratnoi zadachi dlya integrodifferentsialnogo uravneniya Maksvella v odnorodnoi anizatropnoi srede”, Uzbek. mat. zhurn., 2 (2014), 25–34 | MR

[2] J. Janno, L. Von Welfersdorf, “Inverse problems for identification of memory kernels in viscoelasticity”, Math. Methods Appl. Sci., 20:4 (1997), 291–314 | 3.0.CO;2-W class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[3] V. G. Romanov, “Otsenki ustoichivosti resheniya v zadache obopredelenii yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matematiki, 15:1 (2012), 86–98 | Zbl

[4] D. K. Durdiev, Zh. D. Totieva, “Zadacha obopredelenii mnogomernogo yadra uravneniya vyazkouprugosti”, Vladikavkaz. mat. zhurn., 17:4 (2015), 18–43 | MR

[5] D. K. Durdiev, Zh. Sh. Safarov, “Obratnaya zadacha ob opredelenii odnomernogo yadra uravneniya vyazkouprugosti v ogranichennoi oblasti”, Mat. zametki, 97:6 (2015), 855–867 | DOI | MR | Zbl

[6] D. K. Durdiev, Zh. D. Totieva, “Zadacha obopredelenii odnomernogo yadra uravneniya vyazkouprugosti”, Sib. zhurn. industr. matematiki, 16:2 (2013), 72–82 | MR | Zbl

[7] A. L. Karchevskii, A. G. Fatyanov, “Chislennoe reshenie obratnoi zadachi dlya sistemy uprugosti s posledeistviem dlya vertikalno neodnorodnoi sredy”, Sib. zhurn. vychisl. matematiki, 4:3 (2001), 259–268 | MR

[8] J. Jaan, L. Von Wolfersdorf, “An inverse problem for identification of a time- and spacedependent memory kernel in viscoelasticity”, Inverse Problems, 17:1 (2001), 13–24 | DOI | MR | Zbl

[9] F. Colombo, D. Guidetti, “A global in time existence and uniqueness result for a semilinear integro-differential parabolic inverse problem in Sobolev spaces”, Math. Methods Appl. Sci., 17 (2007), 1–29 | DOI | MR

[10] F. Colombo, D. Guidetti, “Some results on the Identification of memory kernels”, Oper. Theory Adv. Appl., 216 (2011), 121–138 | MR

[11] A. Favaron, “Identification of Memory Kernels Depending on Time and on an Angular Variable”, Zeitschrift Anal. Anwendungen, 24:4 (2005), 735–762 | DOI | MR

[12] V. G. Romanov, Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984

[13] A. V. Vasileva, N. A. Tikhonov, Integralnye uravneniya, Fizmatlit, M., 2002