An inverse problem for the system of viscoelasticity equations
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 26-32

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the problem of reconstructing the memory function of a viscoelastic medium from the system of viscoelastic equations for a homogeneous anisotropic medium. As additional information, the Fourier image of the displacement vector with respect to the spatial variables for the values $\nu_0\neq 0$ of the transformation parameter is given. It is demonstrated that, provided the data of the problem satisfy some conditions of agreement and smoothness, the solution of the problem is uniquely determined in the class of continuous functions and depends continuously on the given functions.
Keywords: inverse problem, viscoelasticity, uniqueness, stability.
Mots-clés : existence
@article{SJIM_2019_22_4_a2,
     author = {U. D. Durdiev},
     title = {An inverse problem for the system of viscoelasticity equations},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/}
}
TY  - JOUR
AU  - U. D. Durdiev
TI  - An inverse problem for the system of viscoelasticity equations
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 26
EP  - 32
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/
LA  - ru
ID  - SJIM_2019_22_4_a2
ER  - 
%0 Journal Article
%A U. D. Durdiev
%T An inverse problem for the system of viscoelasticity equations
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 26-32
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/
%G ru
%F SJIM_2019_22_4_a2
U. D. Durdiev. An inverse problem for the system of viscoelasticity equations. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 26-32. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a2/