Creep and plastic flow in a rotating cylinder with a rigid inclusion
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 121-133.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under study is the process of producing irreversible deformations in a rotating cylinder of a material with elastic, viscous, and plastic properties. It is assumed that, before the prescribed maximum angular velocity is reached, the cylinder with a rigid inclusion rotates with acceleration and after that, with deceleration. As the inertial forces change, the irreversible deformations initially grow as creep deformations, and, as the angular velocity increases and the stress states reach the yield surface, some plastic flow region originates and develops. Thereafter, an elastoplastic unloading boundary emerges: The plastic flow region decreases as this boundary surface moves across the volume. The elastoplastic boundaries turn out to be the place where the mechanism is turned on (or off) of fast and intensive production of irreversible deformations (the plastic flow). The results of simulation of the time-varying deformations and stresses, including the residual stresses and their relaxation, are presented and discussed.
Keywords: rotating cylinder, small deformation, viscoplasticity, creep, plane strain, generalized plane strain, plane stress state.
@article{SJIM_2019_22_4_a11,
     author = {S. V. Firsov and A. N. Prokudin and A. A. Burenin},
     title = {Creep and plastic flow in a rotating cylinder with a rigid inclusion},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {121--133},
     publisher = {mathdoc},
     volume = {22},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a11/}
}
TY  - JOUR
AU  - S. V. Firsov
AU  - A. N. Prokudin
AU  - A. A. Burenin
TI  - Creep and plastic flow in a rotating cylinder with a rigid inclusion
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 121
EP  - 133
VL  - 22
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a11/
LA  - ru
ID  - SJIM_2019_22_4_a11
ER  - 
%0 Journal Article
%A S. V. Firsov
%A A. N. Prokudin
%A A. A. Burenin
%T Creep and plastic flow in a rotating cylinder with a rigid inclusion
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 121-133
%V 22
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a11/
%G ru
%F SJIM_2019_22_4_a11
S. V. Firsov; A. N. Prokudin; A. A. Burenin. Creep and plastic flow in a rotating cylinder with a rigid inclusion. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 4, pp. 121-133. http://geodesic.mathdoc.fr/item/SJIM_2019_22_4_a11/

[1] L. A. Tolokonnikov, Mekhanika deformiruemogo tverdogo tela, Vyssh. shkola, M., 1979

[2] Yu. N. Rabotnov, Polzuchest elementov konstruktsii, Nauka, M., 1966

[3] Yu. N. Rabotnov, Mekhanika deformiruemogo tverdogo tela, Nauka, M., 1979

[4] S. P. Timoshenko, Dzh. Guder, Teoriya uprugosti, Nauka, M., 1979

[5] A. I. Lure, Nelineinaya teoriya uprugosti, Nauka, M., 1980

[6] A. Nadai, Theory of Flow and Fracture of Solids, v. 1, McGraw Hill, N.Y., 1950

[7] P. G. Hodge, M. Balaban, “Elastic-plastic analysis of a rotating cylinder”, Internat. J. Mech. Sci., 4:6 (1962), 465–476 | DOI

[8] U. Gamer, M. Sayir, “Elastic-plastic stress distribution in a rotating solid shaft”, Z. Angew. Math. Phys., 35:5 (1984), 601–617 | DOI | Zbl

[9] D. D. Ivlev, “Tri diskussii po mekhanike”, Vestn. Samar. gos. un-ta, 54:4 (2007), 115–123

[10] U. Gamer, R. H. Lance, “Stress distribution in a rotating elastic-plastic tube”, Acta Mech., 50:1–2 (1983), 1–8 | DOI | Zbl

[11] W. Mack, “Rotating elastic-plastic tube with free ends”, Internat. J. Solids and Structures, 27:11 (1991), 1461–1476 | DOI | Zbl

[12] U. Gamer, W. Mack, I. Varga, “Rotating elastic-plastic solid shaft with fixed ends”, Internat. J. Engrg. Sci., 35:3 (1997), 253–267 | DOI | Zbl

[13] S. M. Kamal, U. S. Dixit, A. Roy, Q. Liu, V. V. Silberschmidt, “Comparison of plane-stress, generalized-plane-strain and 3D FEM elastic-plastic analyses of thick-walled cylinders subjected to radial thermal gradient”, Internat. J. Mech. Sci., 131–132 (2017), 744–752 | DOI

[14] S. V. Firsov, “Neobratimye deformatsii vraschayuschegosya tsilindra”, Izvestiya Alt. gos. un-ta. Ser. Matematika i mekhanika, 102:4 (2018), 114–117 | DOI | MR

[15] A. N. Prokudin, S. V. Firsov, “Vyazkoplasticheskoe techenie vraschayuschegosya pologo tsilindra”, Dalnevostochnyi mat. zhurn., 18:2 (2018), 242–260 | MR | Zbl

[16] A. N. Prokudin, S. V. Firsov, “Raschet polzuchesti vraschayuschegosya tsilindra so svobodnymi kontsami”, Vestnik ChGPU. Ser. Mekhanika predelnogo sostoyaniya, 35:1 (2018), 63–73 | MR