New three-dimensional plastic flows corresponding to a homogeneous stress state
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 114-117
Cet article a éte moissonné depuis la source Math-Net.Ru
Three-dimensional plasticity equations for the Mises medium are under consideration. For these equations, the velocity fields for a three-dimensional homogeneous plastic stress state are investigated. We discover new velocity fields having functional arbitrariness for a homogeneous stress state.
Keywords:
three-dimensional plastic flow, uniform stress state.
@article{SJIM_2019_22_3_a9,
author = {S. I. Senashov and I. L. Savostyanova},
title = {New three-dimensional plastic flows corresponding to a homogeneous stress state},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {114--117},
year = {2019},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/}
}
TY - JOUR AU - S. I. Senashov AU - I. L. Savostyanova TI - New three-dimensional plastic flows corresponding to a homogeneous stress state JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 114 EP - 117 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/ LA - ru ID - SJIM_2019_22_3_a9 ER -
S. I. Senashov; I. L. Savostyanova. New three-dimensional plastic flows corresponding to a homogeneous stress state. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 114-117. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/
[1] R. Khill, Matematicheskaya teoriya plastichnosti, Gostekhizdat, M., 1954
[2] D. D. Ivlev, L. M. Maksimova, R. I. Nepershin i dr, Predelnoe sostoyanie deformiruemykh tel i konstruktsii, Fizmatlit, M., 2008
[3] M. A. Zadoyan, Prostranstvennye zadachi teorii plastichnosti, Nauka, M., 1992
[4] B. D. Annin, V. O. Bytoev, S. I. Senashov, Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985
[5] Prager. V., “Trekhmernoe plasticheskoe techenie pri odnorodnom napryazhennom sostoyanii”, Mekhanika, 1958, no. 3, 23–27