New three-dimensional plastic flows corresponding to a homogeneous stress state
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 114-117.

Voir la notice de l'article provenant de la source Math-Net.Ru

Three-dimensional plasticity equations for the Mises medium are under consideration. For these equations, the velocity fields for a three-dimensional homogeneous plastic stress state are investigated. We discover new velocity fields having functional arbitrariness for a homogeneous stress state.
Keywords: three-dimensional plastic flow, uniform stress state.
@article{SJIM_2019_22_3_a9,
     author = {S. I. Senashov and I. L. Savostyanova},
     title = {New three-dimensional plastic flows corresponding to a homogeneous stress state},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {114--117},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/}
}
TY  - JOUR
AU  - S. I. Senashov
AU  - I. L. Savostyanova
TI  - New three-dimensional plastic flows corresponding to a homogeneous stress state
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 114
EP  - 117
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/
LA  - ru
ID  - SJIM_2019_22_3_a9
ER  - 
%0 Journal Article
%A S. I. Senashov
%A I. L. Savostyanova
%T New three-dimensional plastic flows corresponding to a homogeneous stress state
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 114-117
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/
%G ru
%F SJIM_2019_22_3_a9
S. I. Senashov; I. L. Savostyanova. New three-dimensional plastic flows corresponding to a homogeneous stress state. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 114-117. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a9/

[1] R. Khill, Matematicheskaya teoriya plastichnosti, Gostekhizdat, M., 1954

[2] D. D. Ivlev, L. M. Maksimova, R. I. Nepershin i dr, Predelnoe sostoyanie deformiruemykh tel i konstruktsii, Fizmatlit, M., 2008

[3] M. A. Zadoyan, Prostranstvennye zadachi teorii plastichnosti, Nauka, M., 1992

[4] B. D. Annin, V. O. Bytoev, S. I. Senashov, Gruppovye svoistva uravnenii uprugosti i plastichnosti, Nauka, Novosibirsk, 1985

[5] Prager. V., “Trekhmernoe plasticheskoe techenie pri odnorodnom napryazhennom sostoyanii”, Mekhanika, 1958, no. 3, 23–27