Monotonicity of the Poincar\'{e} mapping in some models of circular gene networks
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 39-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain some sufficient conditions for the existence of a periodic trajectory of the Elowitz–Leibler type piecewise linear dynamical system that simulates a simplest nonsymmetric circular gene network. We prove the monotonicity of the corresponding Poincaré mapping and construct an invariant toric neighborhood of this cycle.
Keywords: circular gene network, positive and negative feedbacks, piecewise-linear dynamical system, Poincaré mapping, cycle.
Mots-clés : invariant domain
@article{SJIM_2019_22_3_a3,
     author = {V. P. Golubyatnikov and L. S. Minushkina},
     title = {Monotonicity of the {Poincar\'{e}} mapping in some models of circular gene networks},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {39--47},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a3/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - L. S. Minushkina
TI  - Monotonicity of the Poincar\'{e} mapping in some models of circular gene networks
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 39
EP  - 47
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a3/
LA  - ru
ID  - SJIM_2019_22_3_a3
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A L. S. Minushkina
%T Monotonicity of the Poincar\'{e} mapping in some models of circular gene networks
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 39-47
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a3/
%G ru
%F SJIM_2019_22_3_a3
V. P. Golubyatnikov; L. S. Minushkina. Monotonicity of the Poincar\'{e} mapping in some models of circular gene networks. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 39-47. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a3/

[1] T. A. Bukharina, V. P. Golubyatnikov, D. P. Furman, M. V. Kazantsev, N. E. Kirillova, “Mathematical and numerical models of two asymmetric gene networks”, Sib. elektron. mat. izvestiya, 15 (2018), 1271–1283 | MR | Zbl

[2] S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov, “Yavlenie bufernosti v koltsevykh gennykh setyakh”, Teor. i mat. fizika, 187:3 (2016), 560–579 | DOI | MR | Zbl

[3] V. P. Golubyatnikov, N. E. Kirillova, “O tsiklakh v modelyakh funktsionirovaniya koltsevykh gennykh setei”, Sib. zhurn. chistoi i prikl. matematiki, 18:1 (2018), 54–63 | MR

[4] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Periodicheskie resheniya tipa beguschikh voln v koltsevykh gennykh setyakh”, Izv. RAN. Ser. Matematika, 80:3 (2016), 67–94 | DOI | MR | Zbl

[5] H. T. Banks, J. M. Mahaffy, “Stability of cyclic gene models for systems involving repression”, J. Theor. Biology, 74 (1978), 323–334 | DOI | MR

[6] M. B. Elowitz, S. Leibler, “A synthetic oscillatory network of transcriptional regulators”, Nature, 403 (2000), 335–338 | DOI

[7] V. A. Likhoshvai, Yu. G. Matushkin, S. I. Fadeev, “Zadachi funktsionirovaniya gennykh setei”, Sib. zhurn. industr. matematiki, 6:2 (2003), 75–84 | MR

[8] N. B. Ayupova, V. P. Golubyatnikov, “O edinstvennosti tsikla v trekhmernoi modeli molekulyarnogo repressilyatora”, Sib. zhurn. industr. matematiki, 17:1 (2014), 3–7 | MR | Zbl

[9] M. V. Kazantsev, “O nekotorykh svoistvakh grafov domenov dinamicheskikh sistem”, Sib. zhurn. industr. matematiki, 18:4 (2015), 42–49 | MR

[10] N. B. Ayupova, V. P. Golubyatnikov, M. V. Kazantsev, “O suschestvovanii tsikla v odnoi nesimmetrichnoi modeli molekulyarnogo repressilyatora”, Sib. zhurn. vychisl. matematiki, 20:2 (2017), 121–130 | MR | Zbl

[11] V. P. Golubyatnikov, V. V. Ivanov, L. S. Minushkina, “O suschestvovanii tsikla v odnoi nesimmetrichnoi modeli koltsevoi gennoi seti”, Sib. zhurn. chistoi i prikl. matematiki, 18:3 (2018), 26–32

[12] V. P. Golubyatnikov, V. V. Ivanov, “Tsikly v nechetnomernykh modelyakh koltsevykh gennykh setei”, Sib. zhurn. industr. matematiki, 21:4 (2018), 28–38 | Zbl

[13] M. W. Hirsch, Monotone flows with dense periodic orbits, 2018, 10 pp., arXiv: 1805.02592v2 [math.DS]