Mots-clés : small perturbation
@article{SJIM_2019_22_3_a2,
author = {A. A. Gavril'eva and Yu. G. Gubarev and M. P. Lebedev},
title = {The {Miles} {Theorem} and the first boundary value problem for the {Taylor{\textendash}Goldstein} equation},
journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
pages = {24--38},
year = {2019},
volume = {22},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/}
}
TY - JOUR AU - A. A. Gavril'eva AU - Yu. G. Gubarev AU - M. P. Lebedev TI - The Miles Theorem and the first boundary value problem for the Taylor–Goldstein equation JO - Sibirskij žurnal industrialʹnoj matematiki PY - 2019 SP - 24 EP - 38 VL - 22 IS - 3 UR - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/ LA - ru ID - SJIM_2019_22_3_a2 ER -
%0 Journal Article %A A. A. Gavril'eva %A Yu. G. Gubarev %A M. P. Lebedev %T The Miles Theorem and the first boundary value problem for the Taylor–Goldstein equation %J Sibirskij žurnal industrialʹnoj matematiki %D 2019 %P 24-38 %V 22 %N 3 %U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/ %G ru %F SJIM_2019_22_3_a2
A. A. Gavril'eva; Yu. G. Gubarev; M. P. Lebedev. The Miles Theorem and the first boundary value problem for the Taylor–Goldstein equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 24-38. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/
[1] J. W. Miles, “On the stability of heterogeneous shear flows”, J. Fluid Mech., 10:4 (1961), 496–508 | DOI | MR | Zbl
[2] L. N. Howard, “Note on a paper of John Miles”, J. Fluid Mech., 10:4 (1961), 509–512 | DOI | MR | Zbl
[3] L. A. Dikii, Gidrodinamicheskaya ustoichivost i dinamika atmosfery, Gidrometeoizdat, L., 1976
[4] O. R. Kozyrev, Yu. A. Stepanyants, “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89
[5] A. A. Gavrileva, Yu. G. Gubarev, “Ustoichivost ustanovivshikhsya ploskoparallelnykh sdvigovykh techenii idealnoi stratifitsirovannoi zhidkosti v pole sily tyazhesti”, Vestnik SVFU, 9:3 (2012), 15–21
[6] A. A. Gavrilieva, Yu. G. Gubarev, M. P. Lebedev, “Rapid approach to resolving the adequacy problem of mathematical modeling of physical phenomena by the example of solving one problem of hydrodynamic instability”, Internat. J. Theor. Math. Phys., 3:4 (2013), 123–129
[7] A. A. Gavrileva, Yu. G. Gubarev, M. P. Lebedev, “Teorema Mailsa i novye chastnye resheniya uravneniya Teilora Goldsteina”, Uchen. zap. Kazan. un-ta. Ser. Fiz. mat. nauki, 158, no. 2, 2016, 156–171
[8] O. M. Fillips, Dinamika verkhnego sloya okeana, Mir, M., 1969
[9] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M., 1950 | MR
[10] N. G. Chetaev, Ustoichivost dvizheniya, Gostekhizdat, M., 1955
[11] F. Drazin, Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005
[12] G. N. Vatson, Teoriya besselevykh funktsii, v. 1, Izd-vo inostr. lit., M., 1949
[13] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR
[14] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979
[15] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR
[16] B. L. Van der Varden, Algebra, Nauka, M., 1979 | MR
[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973
[18] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990