The Miles Theorem and the first boundary value problem for the Taylor--Goldstein equation
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 24-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the linear stability of stationary plane-parallel shear flows of an inviscid stratified incompressible fluid in the gravity field between two fixed impermeable solid parallel infinite plates with respect to plane perturbations in the Boussinesq approximation and without it. For both cases, we construct some analytical examples of steady plane-parallel shear flows of an ideal density-heterogeneous incompressible fluid and small plane perturbations in the form of normal waves imposed on them, whose asymptotic behavior proves that these perturbations grow in time regardless of whether the well-known result of spectral stability theory (the Miles Theorem) is valid or not.
Keywords: stratified fluid, stationary flow, instability, Taylor–Goldstein equation, Miles Theorem, analytical solution, asymptotic expansion.
Mots-clés : small perturbation
@article{SJIM_2019_22_3_a2,
     author = {A. A. Gavril'eva and Yu. G. Gubarev and M. P. Lebedev},
     title = {The {Miles} {Theorem} and the first boundary value problem for the {Taylor--Goldstein} equation},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {24--38},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/}
}
TY  - JOUR
AU  - A. A. Gavril'eva
AU  - Yu. G. Gubarev
AU  - M. P. Lebedev
TI  - The Miles Theorem and the first boundary value problem for the Taylor--Goldstein equation
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 24
EP  - 38
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/
LA  - ru
ID  - SJIM_2019_22_3_a2
ER  - 
%0 Journal Article
%A A. A. Gavril'eva
%A Yu. G. Gubarev
%A M. P. Lebedev
%T The Miles Theorem and the first boundary value problem for the Taylor--Goldstein equation
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 24-38
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/
%G ru
%F SJIM_2019_22_3_a2
A. A. Gavril'eva; Yu. G. Gubarev; M. P. Lebedev. The Miles Theorem and the first boundary value problem for the Taylor--Goldstein equation. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 24-38. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a2/

[1] J. W. Miles, “On the stability of heterogeneous shear flows”, J. Fluid Mech., 10:4 (1961), 496–508 | DOI | MR | Zbl

[2] L. N. Howard, “Note on a paper of John Miles”, J. Fluid Mech., 10:4 (1961), 509–512 | DOI | MR | Zbl

[3] L. A. Dikii, Gidrodinamicheskaya ustoichivost i dinamika atmosfery, Gidrometeoizdat, L., 1976

[4] O. R. Kozyrev, Yu. A. Stepanyants, “Metod integralnykh sootnoshenii v lineinoi teorii gidrodinamicheskoi ustoichivosti”, Itogi nauki i tekhniki. Ser. Mekhanika zhidkosti i gaza, 25, VINITI, M., 1991, 3–89

[5] A. A. Gavrileva, Yu. G. Gubarev, “Ustoichivost ustanovivshikhsya ploskoparallelnykh sdvigovykh techenii idealnoi stratifitsirovannoi zhidkosti v pole sily tyazhesti”, Vestnik SVFU, 9:3 (2012), 15–21

[6] A. A. Gavrilieva, Yu. G. Gubarev, M. P. Lebedev, “Rapid approach to resolving the adequacy problem of mathematical modeling of physical phenomena by the example of solving one problem of hydrodynamic instability”, Internat. J. Theor. Math. Phys., 3:4 (2013), 123–129

[7] A. A. Gavrileva, Yu. G. Gubarev, M. P. Lebedev, “Teorema Mailsa i novye chastnye resheniya uravneniya Teilora Goldsteina”, Uchen. zap. Kazan. un-ta. Ser. Fiz. mat. nauki, 158, no. 2, 2016, 156–171

[8] O. M. Fillips, Dinamika verkhnego sloya okeana, Mir, M., 1969

[9] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M., 1950 | MR

[10] N. G. Chetaev, Ustoichivost dvizheniya, Gostekhizdat, M., 1955

[11] F. Drazin, Vvedenie v teoriyu gidrodinamicheskoi ustoichivosti, Fizmatlit, M., 2005

[12] G. N. Vatson, Teoriya besselevykh funktsii, v. 1, Izd-vo inostr. lit., M., 1949

[13] M. A. Lavrentev, B. V. Shabat, Metody teorii funktsii kompleksnogo peremennogo, Nauka, M., 1973 | MR

[14] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam s formulami, grafikami i matematicheskimi tablitsami, Nauka, M., 1979

[15] A. N. Tikhonov, A. A. Samarskii, Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR

[16] B. L. Van der Varden, Algebra, Nauka, M., 1979 | MR

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii, v. 1, Gipergeometricheskaya funktsiya. Funktsiya Lezhandra, Nauka, M., 1973

[18] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990