On necessary conditions for the solvability of one class of elliptic systems in a half-space
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 8-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider boundary value problems in a half-space for a class of elliptic systems. Assuming that the boundary value problems satisfy the Lopatinskiĭ condition, we give necessary conditions for the unique solvability in Sobolev spaces.
Keywords: elliptic system, boundary value problem, Lopatinskiĭ condition, Sobolev space, solvability condition.
@article{SJIM_2019_22_3_a1,
     author = {L. N. Bondar'},
     title = {On necessary conditions for the solvability of one class of elliptic systems in a half-space},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {8--23},
     publisher = {mathdoc},
     volume = {22},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a1/}
}
TY  - JOUR
AU  - L. N. Bondar'
TI  - On necessary conditions for the solvability of one class of elliptic systems in a half-space
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 8
EP  - 23
VL  - 22
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a1/
LA  - ru
ID  - SJIM_2019_22_3_a1
ER  - 
%0 Journal Article
%A L. N. Bondar'
%T On necessary conditions for the solvability of one class of elliptic systems in a half-space
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 8-23
%V 22
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a1/
%G ru
%F SJIM_2019_22_3_a1
L. N. Bondar'. On necessary conditions for the solvability of one class of elliptic systems in a half-space. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 3, pp. 8-23. http://geodesic.mathdoc.fr/item/SJIM_2019_22_3_a1/

[1] G. V. Demidenko, “Integralnye operatory, opredelyaemye kvaziellipticheskimi uravneniyami. II”, Sib. mat. zhurn., 35:1 (1994), 41–65 | MR | Zbl

[2] G. V. Demidenko, “On solvability of boundary value problems for quasi-elliptic systems in $\mathbb{R}_+^n$”, J. Anal. Appl., 4:1 (2006), 1–11 | DOI | MR | Zbl

[3] L. N. Bondar, “Usloviya razreshimosti kraevykh zadach dlya kvaziellipticheskikh sistem v poluprostranstve”, Differents. uravneniya, 48:3 (2012), 341–350 | Zbl

[4] L. N. Bondar, “Neobkhodimye usloviya razreshimosti odnogo klassa kraevykh zadach dlya kvaziellipticheskikh sistem”, Mat. trudy, 21:1 (2018), 3–16 | MR | Zbl

[5] L. N. Bondar, “Razreshimost kraevykh zadach dlya kvaziellipticheskikh sistem v vesovykh sobolevskikh prostranstvakh”, Vestn. NGU. Ser. Matematika, mekhanika, informatika, 10:1 (2010), 3–17 | MR | Zbl

[6] Volevich L. R., “Razreshimost kraevykh zadach dlya obschikh ellipticheskikh sistem”, Mat. sb., 68:3 (1965), 373–416 | Zbl

[7] I. N. Vekua, Nekotorye obschie metody postroeniya razlichnykh variantov teorii obolochek, Nauka, M., 1982

[8] A. I. Yanushauskas, Zadacha o naklonnoi proizvodnoi teorii potentsiala, Nauka, Novosibirsk, 1985

[9] L. N. Bondar, “Usloviya razreshimosti vtoroi kraevoi zadachi dlya sistemy Nave”, Sib. zhurn. industr. matematiki, 21:4 (2018), 3–14 | Zbl

[10] G. V. Demidenko, Uspenskii S. V., Uravneniya i sistemy, ne razreshennye otnositelno starshei proizvodnoi, Nauch. kniga, Novosibirsk, 1998