Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 81-93

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical statement is given for the problem of filtration of a viscous fluid in a deformable porous medium that possesses predominantly viscous properties. Some theorems are proved on local solvability and existence of a global-in-time solution in the Hölder classes for the problem.
Keywords: Darcy law, poroelasticity, global solvability, uniqueness.
Mots-clés : filtration
@article{SJIM_2019_22_2_a7,
     author = {M. A. Tokareva and A. A. Papin},
     title = {Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/}
}
TY  - JOUR
AU  - M. A. Tokareva
AU  - A. A. Papin
TI  - Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 81
EP  - 93
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/
LA  - ru
ID  - SJIM_2019_22_2_a7
ER  - 
%0 Journal Article
%A M. A. Tokareva
%A A. A. Papin
%T Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 81-93
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/
%G ru
%F SJIM_2019_22_2_a7
M. A. Tokareva; A. A. Papin. Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 81-93. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/