Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 81-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

The mathematical statement is given for the problem of filtration of a viscous fluid in a deformable porous medium that possesses predominantly viscous properties. Some theorems are proved on local solvability and existence of a global-in-time solution in the Hölder classes for the problem.
Keywords: Darcy law, poroelasticity, global solvability, uniqueness.
Mots-clés : filtration
@article{SJIM_2019_22_2_a7,
     author = {M. A. Tokareva and A. A. Papin},
     title = {Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {81--93},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/}
}
TY  - JOUR
AU  - M. A. Tokareva
AU  - A. A. Papin
TI  - Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 81
EP  - 93
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/
LA  - ru
ID  - SJIM_2019_22_2_a7
ER  - 
%0 Journal Article
%A M. A. Tokareva
%A A. A. Papin
%T Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 81-93
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/
%G ru
%F SJIM_2019_22_2_a7
M. A. Tokareva; A. A. Papin. Global solvability of a system of equations of one-dimensional motion of a viscous fluid in a deformable viscous porous medium. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 81-93. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a7/

[1] Ber Ya., Zaslavski D., Irmei S., Fiziko-matematicheskie osnovy filtratsii vody, Mir, M., 1971

[2] Connolly J. A. D., Podladchikov Y. Y., “Compaction-driven fluid flow in viscoelastic rock”, Geodin. Acta, 11 (1998), 55–84 | DOI

[3] Barenblatt G. I., Entov V. M., Ryzhik V. M., Dvizhenie zhidkostei i gazov v prirodnykh plastakh, Nedra, M., 1984

[4] Fowler A., Mathematical Geoscience, Springer-Verl., London, 2011 | MR | Zbl

[5] Fowler A. C., Yang X., “Pressure solution and viscous compaction in sedimentary basins”, J. Geophys. Res., 104 (1999), 12989–12997 | DOI | MR

[6] Simpson M., Spiegelman M., Weinstein M. I., “Degenerate dispersive equations arising in the study of magma dynamics”, Nonlinearity, 20:1 (2007), 21–49 | DOI | MR | Zbl

[7] Tokareva M. A., “Localization of solutions of the equations of filtration in poroelastic medium”, J. Siberian Federal University. Mathematics Physics, 8:4 (2015), 467–477 | DOI | MR

[8] Tokareva M. A., “Solvability of initial boundary value problem for the equations of filtration in poroelastic media”, J. Physics: Conf. Ser., 722:1 (2016), 012037 | DOI | MR

[9] Saad A. S., Saad B., Saad M., “Numerical study of compositional compressible degenerate twophase flow in saturated-unsaturated heterogeneous porous media”, Comput. Math. Appl., 71:2 (2016), 565–584 | DOI | MR

[10] Terzaghi K., Theoretical Soil Mechanics, John Wiley, N.Y., 1943

[11] Morency C., Huismans R. S., Beaumont C., Fullsack P., “A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability”, J. Geophys. Res., 112 (2007), B10407 | DOI

[12] Bear J., Dynamics of Fluids in Porous Media, Elsevier, N.Y., 1972 | Zbl

[13] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983

[14] Papin A. A., Akhmerova I. G., “Solvability of the system of equations of one-dimensional motion of a heat-conducting two-phase mixture”, Math. Notes, 87:2 (2010), 230–243 | DOI | MR | Zbl

[15] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973