Flow regimes in a flat elastic channel in presence of a local change of wall stiffness
Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 37-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

Some mathematical model is proposed of a flow in a long channel with compliant walls. This model allows us to describe both stationary and nonstationary (self-oscillatory) regimes of motion. The model is based on a two-layer representation of the flow with mass exchange between the layers. Stationary solutions are constructed and their structure is under study. We perform the numerical simulation of various flow regimes in presence of a local change of the wall stiffness. In particular, the solutions are constructed that describe the formation of a monotonic pseudoshock and the development of nonstationary self-oscillations.
Keywords: shallow water equations, pseudoshock, self-oscillations.
@article{SJIM_2019_22_2_a3,
     author = {V. Yu. Liapidevskii and A. K. Khe and A. A. Chesnokov},
     title = {Flow regimes in a flat elastic channel in presence of a local change of wall stiffness},
     journal = {Sibirskij \v{z}urnal industrialʹnoj matematiki},
     pages = {37--48},
     publisher = {mathdoc},
     volume = {22},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a3/}
}
TY  - JOUR
AU  - V. Yu. Liapidevskii
AU  - A. K. Khe
AU  - A. A. Chesnokov
TI  - Flow regimes in a flat elastic channel in presence of a local change of wall stiffness
JO  - Sibirskij žurnal industrialʹnoj matematiki
PY  - 2019
SP  - 37
EP  - 48
VL  - 22
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a3/
LA  - ru
ID  - SJIM_2019_22_2_a3
ER  - 
%0 Journal Article
%A V. Yu. Liapidevskii
%A A. K. Khe
%A A. A. Chesnokov
%T Flow regimes in a flat elastic channel in presence of a local change of wall stiffness
%J Sibirskij žurnal industrialʹnoj matematiki
%D 2019
%P 37-48
%V 22
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a3/
%G ru
%F SJIM_2019_22_2_a3
V. Yu. Liapidevskii; A. K. Khe; A. A. Chesnokov. Flow regimes in a flat elastic channel in presence of a local change of wall stiffness. Sibirskij žurnal industrialʹnoj matematiki, Tome 22 (2019) no. 2, pp. 37-48. http://geodesic.mathdoc.fr/item/SJIM_2019_22_2_a3/

[1] Pedli T., Gidrodinamika krupnykh krovenosnykh sosudov, Mir, M., 1983

[2] Heil M., Jensen O. E., “Flows in Deformable Tubes and Channels: Theoretical Models and Biological Applications”, Flow Past Highly Compliant Boundaries and in Collapsible Tubes, Fluid Mechanics and Its Applications, 72, Springer-Verl., 2003, 15–49 | DOI | MR

[3] Formaggia L., Lamponi D., Quarteroni A., “One-dimensional models for blood flow in arteries”, J. Engrg. Math., 47 (2003), 251–276 | DOI | MR | Zbl

[4] Shapiro A. H., “Steady flow in collapsible tubes”, J. Biomech. Engrg., 99:3 (1977), 126–147 | DOI

[5] Cancelli C., Pedley T. J., “A separated-flow model for collapsible tube oscillations”, J. Fluid Mech., 157 (1985), 375–404 | DOI

[6] Brook B. S., Falle S. A. E. G., Pedley T. J., “Numerical solutions for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state”, J. Fluid Mech., 396 (1999), 223–256 | DOI | MR | Zbl

[7] Chesnokov A. A., Lyapidevskii V. Yu., “Struktura katyaschikhsya voln v dlinnykh trubkakh s podatlivymi stenkami”, Trudy MIAN, 300, 2018, 205–215 | Zbl

[8] Lyapidevskii V. Yu., Chesnokov A. A., “Sloi smesheniya pod svobodnoi poverkhnostyu”, Prikl. mekhanika i tekhn. fizika, 55:2 (2014), 127–140

[9] Lipatov I. I., Lyapidevskii V. Yu., Chesnokov A. A., “Model nestatsionarnogo psevdoskachka v barotropnom techenii gaza”, Dokl. AN, 466:5 (2016), 545–549 | DOI

[10] Lyapidevskii V. Yu., Teshukov V. M., Matematicheskie modeli rasprostraneniya dlinnykh voln v neodnorodnoi zhidkosti, Izd-vo SO RAN, Novosibirsk, 2000

[11] Chesnokov A. A., “Osesimmetrichnye vikhrevye dvizheniya zhidkosti v dlinnoi elastichnoi trube”, Prikl. mekhanika i tekhn. fizika, 42:4 (2001), 76–87 | Zbl

[12] Teshukov V. M., “Gazodinamicheskaya analogiya dlya vikhrevykh techenii so svobodnoi granitsei”, Prikl. mekhanika i tekhn. fizika, 48:3 (2007), 8–15

[13] Townsend A. A., The Structure of Turbulent Shear Flow, Univ. Press, Cambridge, 1956 | MR | Zbl

[14] Bradshaw P., Ferriss D. H., Atwell N. P., “Calculation of boundary-layer development using the turbulent energy equation”, J. Fluid Mech., 28 (1967), 593–616 | DOI

[15] Nessyahu H., Tadmor E., “Non-oscillatory central differencing schemes for hyperbolic conservation laws”, J. Comp. Phys., 87 (1990), 408–463 | DOI | MR | Zbl